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Viscoelasticity of a Simple Liquid Mixture during Spinodal Decomposition
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We report measurements of the effective viscosity and elasticity of a critical mixture of isobutyric acid
and water in the process of phase separation under shear. The viscoelasticity of the sheared sample is a
consequence of capillary forces associated with domain interfaces that produce linear domain growth in

quiescent samples. We find agreement with a theory recently proposed by Doi and Ohta and obtain an
estimate of the interfacial area per unit volume during spinodal decomposition.

PACS numbers: 64.60.Ht, 47.20.Hw, 68.10.Et

Much theoretical and experimental effort has been de-
voted to the problem of the evolution toward a two-phase
equilibrium state that results when an initially homogene-
ous mixture is "quenched" to conditions of partial misci-

bility, e.g. , by applying an abrupt change of the tempera-
ture. A quench of the mixture with critical composition
x, through the critical temperature T, leaves the uniform
mixture in a state of maximum free energy unstable to
infinitesimal concentration fluctuations, and the sample
begins to unmix in a process called spinodal decomposi-
tion [ll. The appearance and growth of concentration in-

homogeneities resulting from this thermodynamic insta-
bility is described by the Cahn-Hilliard-Cook (CHC)
equation, a partial differential Langevin equation for the
concentration field [2]. Solutions to this equation are
quasiperiodic functions with a characteristic wavelength
a (t ) that increases in time according to a (t ) ~ t t' with

p = —,
' at sufficiently long times. This result describes the

coarsening of a structure of interconnected concentration
domains [3].

If the coupling of the concentration field with other
currents can be ignored, then the CHC equation by itself
may fully describe the unmixing process Howeve. r, it is
known that the coupling between the concentration and
velocity fields is crucial in fluid systems and results in a
much larger growth exponent p. An understanding of
this behavior at a phenomenological level can be
developed as follows [4]. In times that are typically short
on the scale of an experiment, the concentration domains
can attain a characteristic size a(t) of the order of 10(,
where ( is the correlation length of the concentration
fluctuations in the equilibrium phases. The boundaries
between the domains then act like interfaces possessing
an interfacial tension I . Rapid coarsening of the domain
structure can then occur as the higher capillary pressure
at regions of high interface curvature drives a flow of ma-
terial from the necks to the bulges of the interconnected,
tubelike domains. In this process, the interfacial area per
unit volume q disappears from the system according to
q '(t) =c(I/rin)t, where tin represents the viscosity of

the liquids in the interior of the domains, and c is a di-
mensionless constant. Since a(t) ecq '(t), this hydro-
dynamic instability results in domain growth with an ex-
ponent p =1. Linear domain growth has been reported in

many light-scattering measurements performed on a
variety of simple liquid mixtures [5,6]. More recently, it
has been found in numerical solutions of the convectively
coupled CHC and Navier-Stokes equations [7].

Since hydrodynamic effects are of paramount impor-
tance in the phase separation of liquid mixtures, it is nat-
ural to consider the effects of macroscopic flows. Up to
now, most theoretical [8] and experimental [9] work on
the spinodal decomposition of flowing liquid mixtures has
dealt with the effect of an imposed shear flow on the
shape and growth of the domains. Onuki has also con-
sidered the complementary question of how the deforma-
tion of the domains, by introducing new stresses, may
affect the flow characteristics of the bulk liquid [10].
Light-scattering experiments have demonstrated the an-
isotropy of the domains' structure and growth [9], but a
mechanical technique is required in order to measure the
effect of these domain deformations on the state of stress
in the fluid. It is this rheological information that would
be needed, for example, to solve a boundary-value prob-
lem for the fluid-velocity field. We report the results of
such rheological measurements. By observing the motion
of a freely oscillating disk immersed in a binary liquid
mixture undergoing spinodal decomposition, we deduce
the effective stress-strain relation of the interconnected
domains and their interfaces. We find that following a
quench through T„a critical mixture of isobutyric acid
and water (IBA+H20) behaves like a viscoelastic ma-
terial which possesses an enhanced viscosity hg=g —

go
and an elastic shear modulus G. These quantities in-
crease with increasing quench depth and decrease with
time as the phase separation proceeds. We have analyzed
our results in terms of a theory of the rheology of a sys-
tem of interconnected coarsening interfaces recently pro-
posed by Doi and Ohta [11]. This theory predicts the de-
cay of hg and 6 as a consequence of the decay of the sur-
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i „=S(t)y, vy =v, =0, (2)

where $(t) is the time-dependent shear rate. Here v rep-
resents the macroscopic velocity field that is observed on
a length scale much larger than the characteristic size of
the concentration domains. We define g and G by writ-

ing
&t

o„,(t) =re(t)+G„, S(t')dt', (3)

where o.„J is the shear component of the stress tensor.
The first term of Eq. (3) represents ordinary viscous ac-
tion. Since S(t) is the velocity gradient, its running time
integral is the gradient of relative displacement, which we

identify with the strain. Hence, the second term of Eq.
(3) represents an elastic contribution due to the deforma-
tion of the underlying structure whose presence we ignore
in writing the spatially smoothed velocity field in Eq. (2).

Working equations for oscillating-body rheometers can
be found in the literature [15]. The expressions we use
will appear in a future publication. They consist of a pair

1964

face to volume ratio q. Consequently, in addition to the
rheological information contained in h, g and G, our ex-

periment allows the observation of the capillary-driven
domain growth mechanism and a determination of the
constant c by a purely mechanical technique.

We have described our apparatus and experimental
procedures in an earlier paper, along with a few prelimi-

nary results [12]. Subsequent improvements in the han-

dling of the mixture and in our understanding of our
instrument's ability to yield both rt and G have allowed us

to obtain reproducible results and to compute the time-
resolved values of these two rheological properties. A

sample of IBA+H20 at the critical composition is con-
tained within a pressure vessel. The temperature is kept
constant and the well-established pressure-quench tech-
nique is used to initiate the phase separation [13]. A disk

with radius R=25 rnrn and thickness 2h =10 mrn is

suspended in the mixture from a torsion wire. Optical
and time-interval measurements allow us to determine
the equation of motion of the disk [14], which we write as

a(t) =W exp( ato—t)sin(tot),

where a(t) is the disk s position angle, A is an amplitude,
A is the dimensionless decay rate, and ai is the frequency
of oscillation. Typical values are h, = 0.022 and co = 1.58
Hz which corresponds to an oscillation period of about 4
s. In the case now considered, where the fluid properties
evolve during the process of phase separation, h, and m

are functions of time. The drag of the fluid causes a de-

crease in the frequency e from its value in vacuo coo. It
is the measurement of two independent parameters
characterizing the disk s motion, the damping A and the

frequency ratio to/coo, that allows us to calculate two

liquid properties, namely, the viscosity g and the elastic
shear modulus G.

To give precise meaning to g and G, consider a shear
flow v of the form

of coupled equations in t), G, 5, and co/coo. The values ol

6 and co/con that are possible for the disk oscillating in an

ordinary viscous fluid, which has no elastic shear
modulus, must be related in such a way as to yield G =0.
In the limit A((1, this consistency relation is simply
co/aio = I —A. When G has a positive value, we find

co/aio) 1
—A in the same limit. Thus the elasticity of the

liquid acts to increase the disk s oscillation frequency.
This behavior is in accord with one s physical intuition
about the eA'ect of "springiness" in the liquid.

In a typical experiment, we begin with the sample in a

one-phase state at such pressure as to place the sample at
a distance above the critical point equivalent to a temper-
ature diff'erence of about 100 mK. The disk is set into

motion, and after a few cycles the pressure is dropped so
as to quench the sample to a point below the critical point

by the quench depth Q, typically equivalent to a few tens

of mK. We monitor the disk's motion during the spinodal

decomposition process that follows for about ten cycles.
Then the pressure is raised to a high value and the mix-

ture is allowed to reequilibrate. We stir the sample
whenever necessary to ensure a uniform concentration.

As a sensitive test of our apparatus and procedures, we

perform runs in which the final pressure is chosen so that
after the pressure drop the sample is still in an equilibri-
um one-phase state above the critical point. Because of
the critical anomaly, the viscosity of the final state is

higher than that of the initial state by 5% to 10%. We
observe that„within experimental resolution, the mea-

sured viscosity becomes constant at the final expected
value within one oscillation cycle. This show that tran-

sient eAects are negligible. Since during these tests the

sample remains an ordinary viscous liquid, its elastic
shear modulus must necessarily be zero at all times. In

fact, we typically measure G =0+ 0.01 rnPa. These devi-,
ations indicate the resolution of the elasticity measure-

ments and can be attributed to the accuracy with which

we can specify the frequency in vacuo cop.

Figure 1 shows the results of a typical quench measure-

ment in which the final pressure is equivalent to a tem-

perature 19 mK below T, . The indicated error bars rep-

resent the reproducibility we typically observe in repeated
quenches of fixed quench depth. We obtain curves of
similar shape after quenches with depths Q in the range
10 mK (Q & 70 mK over which we make measurements.
We find a systematic dependence of g and G on the

quench depth: As the quench becomes deeper, the prop-
erties just after the quench start with higher and fall to
lower values.

The general features of the behavior we observe can be

understood in terms of the theories of Onuki [10] and Doi

and Ohta [11]. The effective stress tensor of a flowing

blend of immiscible liquids separated by an intricate in-

terface may be written as

Ci Vp
O~p Tjp +

Bxp 8x~
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FIG. 1. Viscosity g and elastic shear modulus G as functions

of the time t following a quench of depth 19 mK. The quench
from an initial one-phase state occurs at time t 0.

where I is the interfacial tension and the interface tensor

q,p is defined as

q„„=S(t ) [q„»q„„/q + —,
'

q„»] —(c+k ) (r/rirj) qq„„,

q
= S(r )q„» —c—(I /rin)q',

(7)

(8)

where q is the interfacial area per unit volume. The
terms on the right in Eqs. (6)-(8) describe free stream-
ing of the interface in the macroscopic shear flow. The
remaining terms force q», q,„, and q to decay in the ab-
sence of a macroscopic flow. The decay of q is according
to the capillary-driven coarsening mechanism, since the
solution of Eq. (8) in the case S(t) =0 is given by

q '(r) =c(r/rln)t+qn ', where q=qn at some initial
time r =0. The second terms of Eqs. (6) and (7) describe
the decay of the interface tensor according to the com-
bined eAects of the decay of the extent of the interface q
and a tendency, measured by a phenomenological con-
stant k, for the domain structure to become isotropic in

q,p
=— ds(n, np 3b,p) . - (5)

The first term of Eq. (4) represents the viscous stress as-

sociated with the macroscopic velocity field v; it is as-
sumed that the two liquids have the same viscosity tin. In

Eq. (5), n, and np are components of the unit vector fi

normal to the interface. The integral is to be taken over
all the interfacial surfaces within a volume V whose linear
dimensions are large compared to the domain size but
small compared to the length scale of the macroscopic
flow.

Doi and Ohta have derived an equation of motion for
the interface tensor q,p. In the case of the simple shear
flow represented by Eq. (2), it takes the form

q„» =S(t)[q»/q —q„„—q/3] —(c+k)(r/rln)qq„», (6)

FIG. 2. Reduced viscosity (rl —res)/rio and elastic shear
modulus G/rorip as functions of the time t. The smooth curves
have been calculated from the theory of Doi and Ohta. The
symbols 0, &, and 0 correspond to quenches of depths 11, 19,
and 64 mK, respectively. For clarity, error bars are omitted.

the absence of an imposed flow.

To apply the theory to our experiment, we solve Eqs.
(6)-(8) numerically with S(t) =Snexp( corot)cos(ro—r)
with h =0.022 and ro =1.58 Hz; the shear-rate amplitude

Sn =7.9 s ' is characteristic of our instrument. The pre-
dicted interfacial shear stress is then I q„»(t—). We then

divide time into a series of intervals with length equal to
the oscillation period. On each interval, we express
—rq„»(r) approximately as ASS(r)+GfS(t')dt' [see

Eq. (3)], where the predicted interfacial viscosity hri and

elastic modulus G so obtained are constants on each in-

terval.
When this calculation is carried out, it is found that

after three or four oscillations the theoretical interfacial
viscosities approach zero and the subsequent behavior of
the interface is purely elastic. In the experiments we ob-
serve that the viscosity of the complete fluid system con-

sisting of the domains interfaces and liquid interiors ap-
proaches a constant value (see Fig. I). We therefore
identify the liquid viscosity tin called for in the theory
with the value at which the experimental viscosity be-
comes constant. In the case of the measurement shown in

Fig. 1, we have @0=2.91 mPas. Further inputs to the
theory are the values of the phenomenological constants c
and k and initial values for the quantities q„~, q, and q.
We take t =0 as the instant of the quench and we assume

q„»(0) =0, q„„(0)=0, and q(0) =qc. We fix qo as a
function of quench depth by putting qn

= I/bg, where b is

a dimensionless constant, since we expect the initial

length scale of the domains to be determined by the
correlation length g=gn(g/T, ) '. We use $0=0.362
nm and v=0.63 for the correlation-length amplitude and

exponent [16]. We treat c, k, and b as free parameters

1965
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which we adjust to maximize the agreement between
theory and experiment.

A comparison of the theory and data taken in three
quench experiments is shown in Fig. 2. Reduced values
of the interfacial viscosity (q —r)o)/rio and elastic shear
modulus 6/rot)o are plotted as functions of time after the
quench. The quench depths are 11, 19, and 64 mK and
the corresponding values of go are 3.07, 2.91, and 2.72
rnPas. The values chosen for the adjustable parameters
are c=0.038, k=0.0095=c/4, and b =27. The theory
gives a good account of the observed time and quench-
depth dependence of the measured rheological properties
and a fair prediction of their values. Of interest are the
implied values of the initial surface to volume ratio

qp = I/bg. In the case of the 19-mK quench, for example,
we find q0=2. 32X10 m ', or 2.32 cm per cubic mm of
Auid. The smallness of k in comparison to e indicates
that the decay of the interface tensor q,p is primarily due
to the decay of the extent of the interface itself. The re-
laxation of interfacial anisotropy is secondary.

We do not assign error bars to c, k, and b, because the
optimization of the agreement between theory and experi-
ment has been somewhat subjective. In particular, we

have favored the elasticity modulus. However, it is possi-
ble to compare c and b with quantities derived from
light-scattering experiments performed on quiescent sam-

ples. For example, we have analyzed the data reported in

Ref. [6] and find a(r) = c'(I /rip)r with c'=0.051, where
we assume that the characteristic domain diameter a(t)
is related to the wave vector of maximum scattering
k~(t) by a(t) =2rr/k (r). At the time t„of the cross-
over to the regime of linear domain growth, we calculate
a '(t«) = I/b'( with b'=37; t« is about 5 s for a
quench of depth 19 mK. The similarity of c to c' and b to
b' is encouraging but requires further interpretation, be-
cause q '(r) and a(t) are not identical, but rather are
related by an unknown dimensionless constant of the or-

der 1.
In summary, we have measured the flow properties of a

simple liquid mixture undergoing spinodal decomposition.
Our results show that the interfacial eff'ects which pro-
duce rapid domain growth in quiescent samples result in

significant time-varying viscoelasticity in samples under

shear. The theory proposed by Doi and Ohta has been
shown to apply. We conclude that information on the
growth and morphology of the domains can be obtained
from rheological measurements.
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