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Eff'ects of Disorder on the Vibrational Properties of SiGe Alloys:
Failure of Mean-Field Approximations
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The vibrational properties of Si~t26e~t2 al1oys are studied using erst principles interatomic force con-
stants. The effects of disorder are either simulated using large supercells or treated at the mean-field
level by the coherent-potential approximation. The latter approach fails not only to reproduce the de-
tails of the Raman spectra due to the local atomic environment, but even to predict the three-mode be-
havior of this alloy. Supercell calculations, on the contrary, are in good agreement with observed Raman
spectra and shed light on the microscopic mechanisms responsible for their detailed features.

PACS numbers: 63.50.+x

The vibrational properties of semiconductor alloys are
currently the subject of active research both because of
their intrinsic interest as realizations of simple disordered
systems, and also because a detailed knowledge of the
physical mechanisms governing them is a prerequisite for
understanding the effects of disorder on the Raman spec-
tra of semiconductor superlattices (SL's).

There are essentially two ingredients of any theoretical
investigation of the vibrational properties of composite
semiconductors such as SL's and alloys. The first is the
knowledge of the interatomic force constants necessary to
build up the dynamical matrix. The second is an ap-
propriate scheme to treat the effects of disorder. By now,
rather accurate real-space interatomic force constants are
available from density-functional perturbation theory [1].
In those cases where the chemical disorder is weak and
the composite system is unstrained —such as AIGaAs—the interatomic force constants of the virtual crystal
provide a very accurate description of SL's and alloys
[l(b),2,3]. This approach has been extended recently to
the case of SiGe systems, where the contribution of mi-

croscopic strain to the actual force constants is non-

negligible, and the virtual-crystal approximation is there-
fore inadequate [4]. As for the effects of disorder, there
are essentially two approaches for coping with them. In
the first, substitutionally disordered systems are simulat-
ed by large, periodically repeated, unit cells (supercells,
SC) where the actual atomic species at each lattice site is
chosen at random. The vibrational properties are then
obtained by averaging over several random configurations
the results of straight diagonalization of the dynamical
matrix which is calculated from the corresponding inter-
atomic force constants and mass distribution. This ap-
proach is exact in principle, the only (nontrivial) limita-
tion being the size of the SC necessary to simulate a mac-
roscopic sample of material. In the second approach, the
disorder is treated by introducing a periodic effective
medium whose Green's function equals the average
Green's function of the disordered system. In practice,
the averaging process cannot be performed exactly, and

one usually resorts to some kind of mean-field approxima-
tion, such as the average T-matrix approximation (ATA)
[5], or the coherent-potential approximation (CPA) [6].
In these approaches, the displacement-displacement
Green's function is considered —instead of the more phys-
ical displacement-momentum one —since with this choice
the mass disorder appears as site diagonal.

Recently, mean-field approximations have been widely

used to study the vibrational properties of various Al-

GaAs systems [7,8], and their results are in reasonable

agreement with those of more sophisticated SC calcula-
tions [2,8]. In particular, the two-mode behavior of Al-

GaAs alloys as well as the dispersive character of pho-
nons are well described within the CPA [7]. Also by vir-

tue of this success, the CPA is currently being used to
study the effects of disorder in SiGe superlattices [9]. In
this paper we show that the CPA fails to predict not only

some fine details of the vibrational spectrum of bulk

Si~i2Ge~i2 which are due to the local atomic environment,
but even its gross features —namely, its three-mode be-

havior. For this reason we expect that the CPA may fail

badly in predicting the effects of disorder in SiGe super-

lattices, particularly in the frequency range where Si-Ge
vibrations give an important contribution to the vibration-

al density of states, which is completely missing in the
CPA picture. SC calculations, on the contrary, are in

good agreement with experimental data and help to clari-

fy the microscopic origin of even the fine details of the
Raman spectra of the alloy. The failure of the CPA is

analyzed by comparing its predictions for bulk Si~g26elg2

alloys with "exact" results obtained from supercells of
512 atoms. All the SC spectral functions we present are
averaged over six configurations and convoluted with a
2-cm -wide Lorentzian to eliminate numerical noise.
The Raman cross section has been calculated as in Refs.
[2,4] by neglecting the different polarizabilities of the
relevant atomic species. The interatomic force constants
as well as other technical details are the same as in Ref.
[4]. CPA calculations have been done using the virtual-

crystal interatomic force constants and neglecting atomic

1992 The American Physical Society 1959



VoLvME 69, NvMBER 13 PH YSICAL REVI E% LETTERS 28 SEPTEM HER 1992

a)

b)

0
Q

t

J

I

/,

100 200 300 400 500

Frequency tcm I
l

b)

I I I

200 300 400

Frequency Icm ']
500

FIG. 1. Vibrational density of states of Si&i2Ge&i2 as obtained
from (a) SC and (b) CPA calculations.

FIG. 2. Raman cross section of Si[i2Geig2 as obtained from
(a) SC and (b) CPA calculations.

relaxation.
In Fig. 1 we compare the vibrational density of states

(DOS) as obtained from SC calculations and from the
CPA. The general features of the DOS is the acoustic re-
gion (below =250 cm ') are well reproduced by the
CPA, except for the loss of a few fine structures. In the
optic region, the DOS is characterized by three well-
defined peaks which are interpreted as due to Si-Si, Si-
Ge, and Ge-Ge vibrations (in order of decreasing fre-
quency) [10]. Some fine structures are also present,
which are due to the effects of the local atomic environ-
ment (see below the discussion on the Raman activity).
In this region the CPA fails not only to reproduce these
fine details (which is not surprising, due to the mean-field
character of the CPA), but even to predict the existence
of the Si-Ge peak. The relative intensity of the Si-Si and
Ge-Ge peaks is also wrong, the latter being barely visible
as a shoulder on top of a structureless background.

In Fig. 2 we display the Raman cross section as ob-
tained from SC and CPA calculations, neglecting the
differences in the Si and Ge polarizabilities. In agree-
ment with experimental findings [11], and as expected
from inspection of the DOS, SC calculations predict the
existence of three well-defined Raman resonances, corre-
sponding to Si-Si, Si-Ge, and Ge-Ge vibrations. Here
again, the Si-Ge peak is missing in the CPA, replaced by
a featureless background, while the Ge-Ge one is barely
visible. SC calculations display weak additional features
between the Si-Ge and Si-Si main peaks in agreement
with experiments, and a good overall agreement is found
for the positions of the main as well as of the weak peaks
over the whole range of compositions [12].

The weak peaks in the region between the Si-Ge and
Si-Si peaks have been interpreted as due to the effect of
different local atomic environments [11]. In order to put
this interpretation on a firmer basis, we define a partial
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F'IG. 3. Partial density of states of Si]izGe»z resolved accord-

ing to the local environment (see text).

density of states, decomposed according to the number of
X atoms (X=Si or Ge) vibrating at a given frequency
and surrounded by a given number n of like atoms:
n(co, X„)=/„8(co —co,)g;,ig,"i P'(X„), where the g's
are vibrational eigenvectors, the index i indicates the
lattice position, a is the Cartesian component, and
P'(X„)=1 if the ith lattice site is occupied by an X atom
surrounded by n like atoms, while P'(X, ) =0 otherwise.

In Fig. 3 we display n(co, X„) calculated for Si|i2Ge|y2.
Let us concentrate on the Si„peaks. It is easily recog-
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nized that different local configurations give rise to
different shapes of the partial density of states, thus
confirming that the weak peaks are due to local fluctua-
tions of the atomic structure. In order to get further in-

sight into the mechanisms which govern the positions of
the weak peaks, we examine the simplest ordered struc-
tures of Si~/2Ge~/2 which display homogeneously a given
local atomic configuration, and we restrict ourselves to
the three highest-lying modes. These special structures
are the zinc-blende (ZB) structure for Sin, the RHI
structure for Si~, the Si2/Ge2 (001) superlattice for Si2,
the RH2 structure for Si3, and the diamond structure for
Si4. By RH I and RH2 we indicate the two inequivalent
Si2/Gei (111) superlattices which are characterized by
different layer stackings: Si-Ge-Ge-Si and Si-Si-Ge-Ge
for RH I and RH2, respectively, where longer dashes cor-
respond to larger interplanar spacings. The frequencies
of superlattice modes are mainly determined by the type
of bonds which stretch to first order in the phonon ampli-
tude ("active bonds"). If one mode has only Si-Si active
bonds, its frequency is very close to that of pure
(strained) Si; if it has only Si-Ge active bonds its fre-
quency is close to that of the ZB structure; if both types
of bonds are active, the frequency is intermediate. The
RH I structure (corresponding to Si~) has one doubly de-
generate mode with only Si-Ge active bonds and a nonde-

generate mode in which all the bonds are active. The
(001) superlattice (corresponding to Si2) has three dis-
tinct peaks. The lowest-lying mode has only Si-Ge active
bonds; in the highest-lying mode only Si-Si bonds stretch;
in the third mode all the bonds are active. The RH2
structure (corresponding to Si3) has one doubly degen-
erate mode in which only Si-Si bonds stretch, and a non-

degenerate mode where all the bonds are active. The fre-
quency of the "intermediate" modes increases with the
number of unlike atoms. All the features described above
for the representative ordered structures are also found
for the corresponding local environments of the bulk al-
loy. The importance of the local atomic environment in

determining the weak peaks of the alloy had already been
stressed in Ref. [11]. Contrary to what was suggested in

this reference, however, our analysis sho~s that the same
local environment can give rise to more than one weak
peak, according to which bonds are active in the vibra-
tion. Also the order of the weak peaks with respect to the
number of neighboring like atoms is different from what
was suggested in Ref. [11].

In Fig. 4 we report the spectral density of states
(SDOS) of Si~~2Ge~y2 along the A (I -5) direction, as cal-
culated by SC's and by the CPA. In the acoustic region,
lattice vibrations —both longitudinal and transverse—maintain the well-defined dispersive character they
have in the pure constituents. Analogous to what hap-
pens in pure Si and Ge, the transverse branch is very Bat
and the longitudinal one merges in the optical region. As
was the case for the total DOS, the CPA provides a qual-
itative correct picture of the "phonon dispersions. " The
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FIG. 4. Spectral density of states of Si&/26e&/2 along the h,

direction, as calculated from SC's (upper panels) and by the
CPA (lower panels).

situation is much more complex in the optic region, where
CPA and SC calculations provide qualitatively different
pictures. Let us examine first the SC results. At zone
center, the SDOS displays three well-defined main peaks
corresponding to Si-Si, Si-Ge, and Ge-Ge vibrations. The
sharpness of these structures was expected by analogy
with the Raman cross section which is closely related to
the zone-center SDOS (in the CPA, they would in fact
coincide). This fact seems to suggest that optic phonons
maintain their dispersive character despite the presence
of disorder, as was the case in AIGaAs alloys [7(a),2].
This is manifestly not the case here. The longitudinal
Si-Si peak loses its identity as one approaches the zone
border, merging into the Si-Ge band. The Ge-Ge longi-
tudinal peak also disappears, merging into the acoustic
band near the zone border. The Si-Ge peak, on the con-
trary, seems to maintain its identity, though broadening
as one gets off zone center. The transverse branches—which are much flatter in the pure compounds and stay
further from the acoustic modes —seem to be less sensi-
tive to disorder, and one can continue to think of a rather
well-defined ro vs q dispersion in the bulk alloy. As one
could expect, the CPA completely fails in providing even
a qualitative picture of the dispersions in the optic region.
The Si-Ge band is simply missing, while the Ge-Ge band
is barely visible.

The origin of the failure of the CPA can be traced back
to a rather general feature of the CPA, as applied to alloy
lattice-dynamical calculations, which does not appear to
have been properly appreciated so far. The situation is
already manifest in a simple model. Consider a crystal
made of weakly interacting diatomic molecules, whose
constituents are atoms of species A (mass m~) with prob-
ability x and B (mass mn) with probability I —x. Sup-
pose that the intramolecular force constant k is indepen-
dent of which atoms actually form the molecule, and that
the intermolecular force constants can be neglected (i.e.,
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gcpA(co )
PCPAN k

(2)

where the frequency-dependent effective mass pcpA
satisfies the self-consistent equation

Itgpttto k[xpg+ (1 x)It 8]
@CPA

=
[xpit+ (1 —x)tttg]ro' —k

(3)
2PcpAmz 2pcpAm8

Pw= P8=
2pcpA+mA 2pcPA+m8

For x& & the CPA DOS displays a single 6-like peak at
the pure-component resonance of the majority band and a
broad structure centered at the mixed-compound reso-
nance, whose width vanishes in the high- and low-

concentration limits. For x = 2, one has instead two 6-

like peaks corresponding to the two pure-component reso-
nances and the broad structure covers the entire range in

between. This very simple model —which is exact in the
narrow-band limit —retains the essential features of the
full calculation and shows that mass disorder, though
usually considered as site diagonal (and treated as such in

the CPA) has in fact the same eA'ect as off-diagona[ dis-

order in that the vibrational properties are determined by
the bond force constant k divided by the square root of
the product of the atomic masses. In the narrow-band
limit, therefore, the alloy displays as many peaks as the
number of diA'erent bonds, even though the interatomic
force constants are not alTected by disorder. The CPA,
instead, stresses the role of atomic masses and displays as
many peaks as the number of difIerent atoms. These
considerations show why the CPA can be successful in

pseudobinary alloys such as A16aAs. In this case, the
anionic sublattice is not aA'ected by disorder and the
number of diAerent bonds is equal to the number of

that the separations among the optical peaks of the A2,
AB, and 82 compounds are much larger than the typical
bandwidths). Under these assumptions, the average
Green's function of the system is

x' (1 —x)' 2x(1 —x)
g = + +

peto k Itttro k pgttco k

where p~ =
2 m~, hatt

=
q mtt, and Itqtt =mama/(m~I 1

+mt'). The alloy DOS clearly displays three peaks cor-
responding to AA, A8, and 88 vibrations, at all concen-
trations. In the CPA, atoms in a A, B]—,alloy are as-
signed an eff'ective, frequency-dependent mass which is

determined by the condition that the T matrix corre-
sponding to the substitution of a single eAective mass
with a physical one vanishes on the average. Applying
the CPA to this simple model, one would obtain

diAerent cationic species on the disordered sublattice.
In this Letter we have shown that the CPA —as it is

usually applied to lattice-dynamical calculations for sub-

stitutional alloys —may fail badly in predicting even the
gross features of the spectrum. It is possible that cluster
extensions of the CPA as well as a treatment of mass dis-

order as oA-diagonal may contribute to overcome some of
the diSculties outlined in this work. SC calculations,
however, have been shown to provide a rather reliable in-

sight into the microscopic mechanisms responsible for the
observed features of substitutionally disordered systems,
still requiring a computational eA'ort which is by now

aA'ordable by a large scientific community.
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