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Real Space Green’s Function Approach to Vibrational Dynamics of a Vicsek Fractal
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A new method to determine eigenvectors based on a real space Green’s function is reported. This
method is particularly useful for determining the eigenvectors corresponding to degenerate states. Using
this approach, the lowest persistent degenerate mode exhibited by the third-stage Vicsek fractal has been
examined and has been shown to be an edge-confined, superlocalized vibrational mode.

PACS numbers: 63.20.Pw, 63.50.+x, 64.60.Ak

Eigenvalue problems are ubiquitous in physics. How-
ever, to our knowledge there is no unique way to deter-
mine eigenvectors corresponding to degenerate eigenval-
ues. In using traditional approaches, it is assumed at the
outset that any linear combination of eigenvectors is also
a valid eigenvector for a degenerate eigenvalue and then a
Gram-Schmidt scheme is used to find a set of orthogonal
eigenvectors that spans the degenerate subspace [1]. In
such an approach, if arbitrary linear combinations are
chosen, the resultant eigenvectors may not possess the ac-
tual symmetry of the physical system at hand. In order
to get the correct symmetry from such an approach,
often, a prior insight into the problem is necessary.

In this Letter it is shown that eigenvectors possessing
the correct local symmetry can be obtained from a real
space Green’s function. The unique feature of this ap-
proach is demonstrated by studying the dynamics of a
Vicsek fractal. In particular, we focus our investigation
on the persistent degenerate modes exhibited by the ei-
genvalue spectrum of the Vicsek fractal. The eigenvec-
tors corresponding to these modes are shown to be edge-
confined, superlocalized vibrational states.

Recently, a confined vibrational mode similar to the
one exhibited by the Vicsek fractal has been observed on
a fractal drum [2). The framework of this drum has been
designed to resemble the third-generation quadratic Koch
curve. The common feature of the quadratic Koch curve
and the Vicsek fractal is that both of them possess four
equivalent branches. According to Sapoval, Gobron, and
Margolina [2], the most puzzling feature of the experi-
mental observation is that the vibrational mode is con-
fined to one of the branches in spite of the presence of the
four equivalent regions. To explain this observation, Sa-
poval, Gobron, and Margolina calculated the first four
lowest excited modes of the fractal drum and found that
a linear superposition of these modes can lead to a
confined mode although none of these modes was local-
ized individually. However, the confined mode construct-
ed this way would not remain confined in a specific region
of space in the time-dependent picture. Therefore, the
above explanation may not fully account for the experi-
mental observation. Using our approach to analyze the
dynamics of the Vicsek fractal, a low-lying, edge-confined
vibrational state emerges quite naturally from a per-
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sistent degenerate mode. To our knowledge, this is the
first evidence of an edge-confined mode in a Vicsek frac-
tal, although the eigenvalue spectrum of this fractal has
been studied earlier [3]. Also, such an edge-confined
mode has not been reported for the widely studied Sier-
pinski gasket which is known to exhibit other types of lo-
calized modes [4].

We first derive the formula relating the eigenvector to
the real space Green’s function. An eigenvalue problem
H|v;)=zi|lv;) can usually be written in terms of the
Green’s function R =(z —H) ~! such that

Y R (2Duy,=0, 1)

where u,, =(m|v;) defines the eigenvector in a complete
set of orthonormal basis |m). If a set of site-dependent
basis vectors is chosen for |m), then the Green’s function
expressed in terms of this basis set is referred to as a real
space Green’s function. If we now make use of the iden-
tity

YR (z+ie) Rk (z +ic) =6i )

and take the imaginary part of Eq. (2), we obtain
YR @) ImRu (z+ie) +eReRy (z+ie) =0,  (3)
m

where we have used the fact that Ry,'(z+ig)
=Ry (z)+i€d;m. A comparison of Egs. (3) and (1) in-
dicates that, as é— 0, ImR,;x ~u,,. This result indicates
that the kth column of ImR(z;) yields the eigenvector
corresponding to the eigenvalue z;. If the eigenvector is
scaled using the diagonal element, namely, ImRy, one
can write the corresponding eigenvector as

Im,— oR +i
|Z>k=2 m 0 mk(z 18)
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In using this method to determine the eigenvector, it is
found that, for a nondegenerate eigenvalue, any one of
the N columns of Im,_.oR(z+ig) corresponds to a valid
eigenvector. This is because either all columns are identi-
cal or they differ from one another by a constant multipli-
cative factor. On the other hand, for a g-fold degenerate
eigenvalue, there will be g independent column vectors
among the NV column vectors of Im, . oR(z+ig). In ad-
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dition, it should be noted that, in this case, each of the
column vectors of ImR represents a possible eigenstate
weighted by the amplitude of the eigenvector at the basis
vector corresponding to the column in question. To see
this, note that [5]

) Mule

ImR(z+ie)=— ——I#———— (5)
‘u; (z—p)+¢?

where |u) denotes the complete set of orthonormal eigen-
vectors of H. Substitution of Eq. (5) into Eq. (4) then
shows that, for a g-fold degenerate eigenvalue A,

m;ll)(ﬂ/d s (6)

where the summation over A in Eq. (6) runs through the
g orthonormal, degenerate eigenvectors [A). Therefore,
we find that the kth column vector of ImR, namely, |2k,
which is a linear combination of the g degenerate eigen-
vectors of A, is a valid eigenvector. It is an eigenvector
weighted by the amplitudes of |A) on the basis vector |k)
and if a local basis vector |k) is used to define the matrix
H then the eigenvector obtained from this calculation
would have the correct local information.

We have used the above method to analyze the vibra-
tional states of the first three stages of a Vicsek fractal
with a rigid boundary. We restrict ourselves to the
third-generation Vicsek fractal because we would like to
show the analogy between the dynamics of the Vicsek
fractal and the available experimental results on the frac-
tal drum [2]. The third-stage Vicsek fractal with its
boundary atoms anchored is shown in Fig. 1. The trans-
verse vibration of a Vicsek fractal can be described by a
matrix in the representation of the local displacement
vectors [6]. The matrix for the first-stage Vicsek gasket
(as shown by the five-particle cluster at the center of Fig.
1) with its outer particles anchored to a rigid boundary
can be expressed as

) =

4y/m —y/m —y/m —y/m —y/m

—y/m 2y/m 0 0 0
Hi=|—ym 0 2y/m 0 0 , @)

—y/m 0 0 2y/m 0

—y/m 0 0 0 2y/m

where y is the force constant and m is the mass of the
particle. The matrix for the subsequent stage can be
built easily from the previous stage because of the self-
similar nature of the fractal. For example, the matrix of
the nth-stage fractal can be constructed from the
(n — 1)th-stage fractal as follows:

H—, V. V VvV Vv
vl H,-, 0 0 0
H,=| vT 0 H,-, O 0 s (8)
v 0 0 H,-, O
vl 0 0 0 H,—
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FIG. 1. The third-generation Vicsek fractal with its bound-
ary atoms anchored. The anchoring locations are marked by
the open symbols and the fractal boundary by the solid line.
The first-stage fractal is shown by the five-particle cluster at the
center (0).

where V'’s are the matrices describing the interactions be-
tween the central cluster and the four outer clusters. The
equivalence of the four outer clusters to the fractal of the
previous stage, which is a reflection of the self-similar na-
ture of the fractal, is clearly seen in Eq. (8).

The eigenvalue spectrum of the first three stages of the
Vicsek fractal has been computed using Egs. (7) and (8).
The most interesting feature of the eigenvalue spectrum
is that the degenerate modes of a given stage persist in all
higher generations (Table I). For example, the threefold
degenerate mode of the first generation, namely, @2 =2.0
(in the reduced unit of y/m =1) persists in the second
generation as an eightfold degenerate mode and in the
third generation as a 32-fold degenerate mode. The de-
gree of degeneracy of the persistent mode in all higher
generations can be predicted. For n= 3, it follows the
pattern D, =5D,—; —8, where D, is the degree of degen-
eracy of the persistent mode at the nth stage. In general,
one can predict the pattern of evolution of the entire ei-
genvalue spectrum from a given stage to the next. This
will be discussed elsewhere [7].

In what follows, we shall focus on the lowest persistent
mode of the third-stage Vicsek gasket, namely, w?
=0.563. This mode first appears in the second stage as a
threefold degenerate mode and it becomes an eightfold
degenerate mode in the third stage. The eigenvectors
corresponding to these modes were calculated using the

TABLE 1. First few low-lying vibrational states of a Vicsek
fractal.

First stage Second stage Third stage
0.76393 (1) 0.19817 (1) 0.16301 (1)
2.00000 (3) 0.56300 (3) 0.18968 (3)
5.23607 (1) 0.94735 (1) 0.20254 (1)

1.28364 (3) 0.35887 (3)
2.00000 (8) 0.44622 (1)
2.29464 (1) 0.56300 (8)

2.89418 (3) 0.608 46 (3)
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FIG. 2. One of the eigenvectors of the threefold degenerate
mode (w?=0.56300) of the second generation is shown in (a).
(b) The same mode evolves into an edge-confined mode in the
third stage.

real space Green’s function [Eq. (4)]. Figure 2(a) shows
one of the eigenvectors of the threefold degenerate mode
and Fig. 2(b) shows how this mode becomes an edge-
confined superlocalized mode in the third stage. A de-
tailed analysis of the eigenvectors corresponding to the
above modes is given below with a view to understand the
nature of the mode and the pattern of evolution of the ei-
genvalue spectrum.

The eigenvector shown in Fig. 2(a) [denoted by
usP (1), where the superscript refers to the degree of de-
generacy, the subscript to the stage, and the number in
parentheses to one of the eigenvectors] can be expressed
as uf?(1) =1{0,d,(a),d;(6),i;(c),i;(d)}. Here the dis-
placement of the central atom is zero [see Fig. 2(a)] and
i;’s are the displacement vector fields associated with the
four equivalent regions (a,b,c,d) surrounding the central
atom where the equivalent regions under consideration
have six particles, as shown in Fig. 3. Furthermore, it
can be seen from Table II that ii,(a) =i,(b) =i, (c) =A

o

0 0O
o
»
o

000 "9 090 % 00O
o O [e]

a
[e]

o 0 o
o

FIG. 3. Partitioning of the second-stage Vicsek fractal into
four equivalent regions surrounding the central particle as used
in the description of the eigenvector ui®(1).

TABLE II. One of the eigenvectors of the threefold degen-
erate mode w?=0.563 of the second-stage fractal: uf’(1)
=(0,u;(a),i;(6),id:(c),d,(d)).

ﬁ|(a) ﬁl(b) ﬁ](c‘) ﬁ](d)
—=0.232 —0.232 —=0.232 0.696
-0.333 =0.333 —0.333 1.0

—0.247 —0.247 —0.247 0.741
=0.172 =0.172 —=0.172 0.516
=0.172 -=0.172 —=0.172 0.516
—0.172 =0.172 =0.172 0.516
and ii;(d) = — 3A for the eigenvector in question. In ad-

dition, there are three other eigenvectors corresponding to
this mode, namely, ui¥(2) ={0,A, —3A,A,A}, ui’(3)
={0,A,A,—3A,A}, and ufP(@)={0,—3A,AA A}
Therefore, 3./=ui® (i) =0. This indicates that there are
only three independent eigenvectors. Clearly, this picture
is consistent with the threefold degeneracy of the mode.
In order for the threefold degenerate mode (wj=0.563)
of the second stage to persist in the third stage, a vibra-
tional configuration similar to that of the second stage
must exist in the third stage. For this to happen, v =w,
must satisfy eigenvalue equations of the second stage and
the third stage simultaneously. It can be realized only if
the displacement vector field of all particles in the central
(25-particle) cluster of the third stage becomes zero,
decoupling the outer clusters from each other. This is a
consequence of the self-similarity reflected by Eq. (8), in-
dicating that the existence of the persistent mode is inti-
mately linked to the self-similar nature of the fractal.
Next, consider the eigenvector shown in Fig. 2(b).
This eigenvector can be represented by ui®(1)=1{0,0,
0,0,uz(d)}, where us(d) is the displacement vector field
of the second-stage cluster located in the region d of the
third stage while the displacement fields of other clusters
vanishes as represented by the boldface zeros. In particu-
lar, uy(d) =1{0,i,(a), i (5),d;(c),d;(d)} with & (a)=0,
i; () =ii,(c) =B, and ii,(d) = — 2B, as can be seen from
Table III. The edge-confined nature of the persistent
mode is clearly seen from the structure of the eigenvector
ui®(1). In addition, there are two other eigenvectors,
u;(2)={0,0,—2B,B,B}, and u,(3)=1{0,0,B,—2B,B}

TABLE III. One of the eigenvectors of the eightfold degen-
erate mode w?=0.563 of the third stage: ui®(1)=1{0,0,
0,0,u2(d)}, u2(d) =10,d,(a),ii; (b),d:1(c), 61 (d)}.

i (a) i (b) a,(c) i,(d)
0.000 —0.348 —0.348 0.696
0.000 -—0.500 —0.500 1.0

0.000 —0.3705 —0.3705 0.741
0.000 —0.258 —0.258 0.516
0.000 —0.258 —0.258 0.516
0.000 —0.258 —0.258 0.516

1957



VOLUME 69, NUMBER 13

PHYSICAL REVIEW LETTERS

28 SEPTEMBER 1992

corresponding to this mode in the cluster labeled 4. How-
ever, X7=u;(i) =0 indicates that there are only two in-
dependent eigenvectors corresponding to this mode in the
cluster under consideration. Finally, since there are four
equivalent clusters (as dictated by the local symmetry),
which are now decoupled, the mode thus becomes an
eightfold degenerate mode.

In conclusion, we have demonstrated the unique fea-
ture of the real space Green’s function in the calculation
of the eigenvectors of degenerate states by studying the
persistent degenerate mode exhibited by the Vicsek frac-
tal. In particular, we found that the lowest persistent de-
generate mode of the third-stage Vicsek fractal is an
edge-confined, superlocalized mode. The persistence and
the evolution of the degenerate mode are shown to be the
consequence of the interplay between the local geometry
and the self-similar nature of the fractal. For our model
fractal, the persistence of a vibrational mode is found to
arise due to the decoupling of the four equivalent
branches, which in turn is due to the zero displacement
vector field associated with the central cluster. Finally,
because of the common feature shared by the Vicsek
fractal and the fractal drum investigated by Sapoval,
Gobron, and Margolina (four equivalent regions coupled

1958

through a central region), we feel that the observed
confinement of the low-lying vibrational mode on the
fractal drum may be understood using the same physical
reasoning.
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