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Crossover to Strong Shear in a Low-Molecular-Weight Critical Polymer Blend
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Small-angle neutron scattering has been used to measure the influence of shear flow on a low-

molecular-weight polymer blend near the critical point. When combined with light scattering measure-
ments of the equilibrium (y=0) critical dynamics, these measurements reveal that the long-range criti-
cal fluctuations begin to break apart when the shear rate becomes comparable to the characteristic relax-
ation rate i, , where s, is the equilibrium lifetime of the critical fluctuations. This eA'ect is directly re-
lated to the decrease in the critical temperature caused by the flow, and the data are found to be in very
good agreement with the theoretical predictions of Onuki and Kawasaki.

PACS numbers: 61.25.Hq, 64.60.Fr, 64.60.Ht

The influence of shear flow on critical Auctuations in

complex fluids is a topic that has received considerable
attention lately [1]. For binary mixtures, it is interesting
to ask how the large-scale concentration fluctuations near
the critical point of unmixing respond to the mixing efl'ect

of the shear. The mode-coupling renormalization-group
treatment of a simple binary fluid under shear, as formu-
lated by Onuki and Kawasaki [2,31, has been used by a
number of authors as a foundation for a description of
polymer blends and solutions [4-7]. Some of the predic-
tions of this complex theory have been confirmed in

small-molecule critical mixtures [8,9]. For a high-
molecular-weight critical polymer blend [10],small-angle
neutron scattering (SANS) measurements appear to be
consistent with a "mean-field" version of the Onuki-
Kawasaki theory, where long-wavelength fluctuations are
suppressed parallel to the Aow, but there is no change in

scattering intensity normal to the Aow [11]. In this pa-
per, we have used SANS to probe the influence of shear
on a low-molecular-weight critical blend. The appeal of
this study is that r„ the equilibrium (y=0) lifetime of
the critical fluctuations, has been measured independently
in the same material. Using the predictions of Onuki and
Kawasaki, we have derived a simple expression that gives
the shear response of the SANS structure factor in terms
of the equilibrium structure factor, the shear rate y, and
the equilibrium lifetime r, . The data are found to col-
lapse onto a universal scaling curve that can be compared
directly with theory without any free parameters.
Displaying the data in this way also reveals a very intui-
tive interpretation of how the shear aAects the critical
fluctuations.

The binary mixture consisted of deuterated polystyrene
(PSD) with a mean degree of polymerization Nz = 9 and
polybutadiene (PB) with 1Vtt =87, both having narrow
molecular-weight distributions (with polydispersity index
less than 1.09). The equilibrium coexistence curve [12] is
shown in the inset of Fig. 1. The observed maximum at
T, =41.2+ 0. 1 'C coincides closely with the Flory-
Huggins critical PSD weight fraction of 0.75. All of the
measurements described in this paper were carried out
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FIG. l. The characteristic lifetime r, =( /D, as a function
of temperature. Inset: The measured equilibrium coexistence
curve.

with samples taken from one large batch of blend

prepared at this critical composition III, . The scattering
measurements were conducted on the 8-m SANS instru-
ment at the Cold Neutron Research Facility of the Na-
tional Institute of Standards and Technology, with a
shear apparatus that has been described in detail else-
where [10]. The geometry of the shearing is in the x-y
plane, with the flow in the x direction and the velocity
gradient in the y direction. Neutrons of wavelength 9 A,
incident along the y axis, were scattered by the sample,
and a two-dimensional detector measured the scattering
intensity in the x-z plane. The data were averaged over
small sectors both parallel and perpendicular to the flow

to preserve any anisotropy that might be present. We are
interested in the crossover from the "weak shear" limit,
where y r, « 1, to the "strong shear" limit, where
)'z, &) 1. Direct knowledge of r, provides an unambigu-
ous distinction between these two limits.

We interpret our data using the theoretical description
of the response of a binary fluid to shear proposed by
Onuki and Kawasaki in Refs. [21 and [3]. Their descrip-
tion starts with the stochastic equations of motion for the
order parameter y(x, t) (the concentration) and the
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Here a(T) =ao(1 —T,/T), where T, is the critical tem-

perature. The first term on the right-hand side of the
equation of motion for y accounts for the shear, and
leads to the stabilization of fluctuations in y along the
direction of flow. The random noise sources 0 and h&

have correlations related to Ao and go in the usual way
via the fluctuation-dissipation theorem [2,3].

In equilibrium, the importance of critical fluctuations
in both the statics and dynamics of this model is well un-

derstood, and the renormalization group has proved a
powerful tool for calculating the expected behavior. In
the case of low-molecular-weight polymer blends, the y
term in Eq. (2) leads to a crossover to Ising behavior in

the static susceptibility and correlation length, S(0) and

(, respectively, as well as a "renormalization" of the criti-
cal temperature T, [13-161. For the blend considered
here, S(0) and ( measured with equilibrium SANS show

a crossover from mean-field to critical behavior as

T T, [12]. Critical fluctuations are also important in

the dynamics, where the nonlinear coupling between y
and v in Eq. (I) causes a divergence in Ao at the critical
point [4, 17]. Dynamic light scattering measurements of
the equilibrium decay rate of the concentration fluctua-

tions, I, =D,q, ~here q is the scattered wave vector,
and the nature of the critical dynamics in this blend are
described elsewhere [18]. The influence of critical fluc-

tuations on the dynamics is apparent in the diffusion

coefficient D, =Ao/S(0), and the characteristic lifetime

r, =g /D, is shown as a function of temperature in Fig.
1. The "critical slowing down" of the concentration fluc-

tuations is evident as a dramatic divergence in i,. near
the critical point.

The treatment of Onuki and Kawasaki emphasizes the
role of critical fluctuations in the response of the fluid to
shear. Neglecting the nonlinear terms in Eq. (1), the
structure factor S(q, y) —{pity —z) is found to satisfy the
mean-field equation [2,3]

[Aoq (a+xq') —
—,
'

yq BIBq~]S(q, y) =Aoq'. (3)

In equilibrium (y=o), critical fluctuations renormalize
a(T) and x/a(T) to S '(0) and g, respectively, and

Eq. (3) reduces to the Ornstein-Zernike expression,

S(q) =S(O) [I+g'q'] -', (4)

transverse part of the velocity field v(x, t ),

Bitt/Bt = —
yy By/Bx —poV (itlv)+AoV (Sf/Bitt)+0,

Bv/Bt = rloV v po—{yV(hf/Bitt) +h] ~,
where {I& denotes the transverse part of the vector in

brackets, go is the zero shear viscosity, Ao is the Onsager
coefticient associated with y, and po accounts for the hy-

drodynamic coupling between itt and v. The quantity f is

the Ginzburg-Landau free energy [12],

in agreement with the observed equilibrium behavior

[12]. To account for critical fluctuations when y&0, a

renormalization-group analysis [2,3] of Eqs. (I) and (2)
in the strong shear limit reveals that Eq. (3) remains val-

id if the parameters a{T) and Ao are renormalized in

terms of the shear rate y to first order in v=4 —d, where

d =3 is the spatial dimension of the system.
The second term on the left-hand side of Eq. (3) leads

to strong anisotropy in S(q, y) for q 0. Even for strong

shear, Eq. (3) predicts that S(q, y) will be isotropic at

high q, and a useful solution can be found by treating the

anisotropic term in Eq. (3) as a perturbation and solving

for S(q, y) iteratively [2,3]. This approach gives S(q, y)
as a power series in the shear rate y, and reduces to Eq.
(4) when y=o. The first-order correction depends on

q, q~, indicating that the anisotropy first appears in the
x-y plane as q decreases. Since the projection of S(q, y)
onto the x-z plane is what we measure (q~ =0), this first

trend toward anisotropy will not appear in our data. The
first trace of anisotropy in the x-z plane comes from the
second-order correction. For a given shear rate j, this

contribution will be significant when

(yr, )z(q„/q)z[2&zq (I+&zq ) I
' —1. (s)

T, (y) —T, (0)
T, (0)

= —r [0.0832'+ O(~')] (y., ) '"", (6)

where r =1 T, (0)/T is the equ—ilibrium reduced temper-
ature, and v=0.63 is the Ising exponent describing the
divergence of the correlation length at the critical point

(g —r "). Although Eq. (6) is derived from the form of
a(T) predicted in the strong shear limit, it reduces to the
correct equilibrium result for y =0. The shear depen-

The q range probed with SANS for this blend is

0.009 &q &0.09 A '. At the highest shear rate used

(y=223 s ') in the vicinity of the equilibrium critical
temperature, Eq. (5) predicts that the anisotropy will not

emerge until q &0.01 A '. Thus any trend toward an-

isotropy would be difficult for us to see, and we expect

S(q, y) to appear essentially isotropic over the q range
used in this study.

The approximation that S(q, y) is isotropic over the q
range in question simplifies the problem considerably,
since we do not have to consider the shear renormaliza-

tion of Ao. At temperatures where critical fluctuations

are irrelevant (T)& T, ), the structure factor is unchanged

by the shear. At temperatures where critical fluctuations

are important (T T, ), S(q, y) depends on y through

the shear dependence of the critical temperature only,

and is given by Eq. (4) with S(0) and g replaced by

S(o, y) and g(y). The shear dependence of the critical
temperature, T, (y), follows from the strong shear renor-

malization of a(T) described above, and is given in terms

of the equilibrium critical temperature, henceforth denot-

ed by T, (0), the equilibrium lifetime r„and the shear
rate y as [2,3]
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FIG. 2. The low-q structure factor S(q, y) measured along

(II) and normal (i) to the flow direction in both the weak and

strong shear limits at T =42.0'C. The lines are fits by Eq. (4).
Over most of the q range, the scattered intensity (inset) is

unaffected by the shear rates used in this study.
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dence of S(0, y) and g(y) will be S(0,y) —[I —T, (y)/
T) ~" and g(y) —[1 —T, (y)/T) "with T, (y) given by
Eq. (6). We have taken the susceptibility exponent y to
be equal to 2v. The change in reduced temperature due
to the shear can be written as

/3r/r = [0.0832a+ 0(a')] (yr, ) 'i'".

Figure 2 shows the measured structure factor S(q, y)
as a function of q, parallel and perpendicular to the flow

direction, for both strong (y =222.9 s ') and weak

(y 0.11 s ') shear at T=42.0'C. The lines are fits of
the data by Eq. (4). Although the strong shear data in

Fig. 2 appear to be slightly anisotropic, when all the shear
rates and temperatures are examined, no trend toward
any systematic anisotropy is evident, as expected. Figure
3 shows the susceptibility S(0, y) for y=0 and y=222. 9
s ', both parallel and perpendicular to the flow, as a
function of T —T, (0). The inset shows a similar plot of
g(y). Both Figs. 2 and 3 reveal how the large-scale criti-
cal fluctuations become suppressed by the shear in the vi-

cinity of the critical point. In Fig. 2 this is evident as a
decrease in the low-q scattering intensity near T, (0).
Similarly, Fig. 3 shows in detail how the How decreases
S(0,y) and g(y) in the vicinity of the equilibrium critical
temperature. Further than 5 K away from T, (0), the
structure factor is unchanged at the highest shear rates
used in this study, which suggests that equilibrium criti-
cal fluctuations do not become significant until T —T, (0)
~5 K.

The breakup of the large-scale (low-q) critical fluctua-
tions by the flow causes the suppression of the critical
temperature described by Eq. (6). The mixing effect of
the shear inhibits phase separation, leading to a drop in

T, . To relate the observed behavior of S(0,y) and ((y)
described above to the prediction of Eq. (6), the suscepti-
bility and correlation length can be written as S(0, y)=S(0)(I +/3r/r ) " and g(y) = g(1+Dr/r) ", with
hr/r given by Eq. (7). When y 0, these two quantities
assume their equilibrium values S(0) and g. Because
hr/r becomes appreciable only for temperatures within 5
K of T, (0), the exponent v=0.63. The reduced suscepti-
bility, S„,d=S(0, y)/S(0), and the reduced correlation
length, g„d=g(y)/g, are then given in terms of the re-
duced shear rate, rr = yr„by
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FIG. 4. The reduced correlation length squared and the re-

duced susceptibility as a function of reduced shear rate. The
solid line is the behavior predicted to 0(s), over six decades in

reduced shear rate, with no free parameters. Inset: The same

plot using a circular average of the scattering intensity, which is

justified by the isotropic nature of the response.
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FIG. 3. S(0,y) for y 0 and in the strong shear limit,

defined both parallel (II) and perpendicular (J ) to the flow

direction, as a function of T —T, (0). Inset: A similar plot of g.
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S =g = I1+ [0.08328+0(E )](~' "j ' (8)

The quantities S,«and g„«are a measure of the
influence of the shear. If the flow has no eflect, S„,q and

(„q are both I, as in equilibrium. When the flow starts to
suppress the large-scale critical fluctuations, S,«and g,«
begin to decrease, reflecting a drop in the low-q scattering
intensity. In Fig. 4 we have plotted S,«and g,«as a
function of 0. for all of the shear rates and temperatures
used in this study. The line is the behavior predicted by
the right-hand side of Eq. (8) to O(s) for d=3. Since
S,«, g,«, and o are all directly known, there are no free
parameters in this fit. The agreement is very good over
six decades in o. Since the response is essentially isotro-
pic, we can average the scattering intensity over the
whole x-z plane, which slightly reduces the scatter in this
plot, as shown in the inset of Fig. 4. The constant 0.0832
in Eq. (8) is a universal, system-independent number pre-
dicted by the O(s) renormalization-group analysis. A
20% change in this constant moves the theoretical curve
well outside of the scatter in the data.

Besides lending strong support to the predictions of
Onuki and Kawasaki applied to polymer blends, Fig. 4
reveals that the flow starts breaking up the long-range
critical fluctuations when the shear rate becomes compa-
rable to the equilibrium relaxation rate of these fluctua-
tions. This is evidenced by the fact that S,«and g,«be-
gin to deviate from unity when the reduced shear rate
0 = yr, becomes comparable to unity, or when 7

—r,
That the size of the critical fluctuations would be limited

by the shear for j ~ r, is very intuitive, since any com-
ponent with an equilibrium lifetime greater than j ' will

essentially be suppressed by the flow.
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