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Absolute and Convective Instabilities in Nonlinear Systems
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The concepts of absolute and convective instability are extended to nonlinear systems with broken
Galilean invariance. As an illustrative model we describe the behavior of a flow, homogeneous in a
semi-infinite domain, which undergoes a subcritica1 pitchfork bifurcation. The classical bifurcation phe-
nomenology is shown to be nontrivially aA'ected by the presence of a nonremovable advection term. In
particular the existence of a hysteresis loop is shown to be restricted to the nonlinear absolute instability
range. A qualitative description of the possible scenarios likely to arise in subcritically bifurcating open
flows is outlined and a practical test is suggested to determine the nature of the bifurcation.

PACS numbers: 47.20.Ft, 47.20.Ky

Mixing layers, jets, or wakes represent examples of
open flows where fluid particles, advected by the mean
flow, enter and leave the experimental domain of interest.
As a result, such flows are generated at a definite spatial
location and input perturbations and mean advection
have to be explicitly considered. The introduction of ab-
solute and convective instability concepts [1-7] has re-
cently provided a reasonable understanding of the linear
spatiotemporal development of such open flows. Usually
these notions are based on the behavior of the Green
function, i.e., the linear response of the system to an ini-
tial localized impulse. If the wave packet representing
the Green function decays asymptotically in any moving
frame, the system is said to be linearly stable (LS). If
this is not the case it will be linearly unstable. Moreover,
it will be absolutely unstable (LA) if, at any fixed loca-
tion, the response grows in time and convectively unstable
if it decays (LC). For LC systems, the response to causal
forcing fixed in space corresponds to the spatial ampli-
fication of the imposed excitation. On the contrary, in

the LA case, the response to forcing cannot be defined be-
cause it is overshadowed by the exponentially growing in-

itial transient. Therefore, the concepts of absolute and
convective instability allow us, in the linear regime, to
discriminate between open flows exhibiting intrinsic dy-
namics and open flows acting as spatial amplifiers of in-

coming turbulence.
Our theoretical understanding is much less complete

for linearly stable open flows in which nonlinearity is de-
stabilizing [81. For example, boundary layers and
Poiseuille flow belong to this class of subcritically unsta-
ble systems. As in the previous case, these flows are gen-
erated at a definite location and we need to describe the
eA'ect of advection and of incoming perturbations. Sub-
critically unstable closed flows are known to exhibit the
catastrophic hysteresis phenomenon and it is of great in-
terest to examine its possible existence in the open flow
geometry. This Letter represents a first attempt at ex-
tending the notions of absolute and convective instability
to nonlinear systems. These concepts are then illustrated
on the real Ginzburg-Landau equation in a semi-infinite

domain with destabilizing third-order and stabilizing
fifth-order nonlinearities. The hysteresis loop is demon-
strated to be restricted to the nonlinear absolute instabili-
ty range of the control parameter. In the nonlinear con-
vective instability region, strong steady forcing is able to
trigger the instability but the flow ultimately returns to
its basic state when forcing is turned off.

It appears natural to propose the following definitions
of nonlinear absolute and convective instabilities: The
basic state of a system is stable (5) if, for all initial per-
turbations of frnite extent and frnite amplitude, the flow
relaxes to the basic state everywhere in any moving
frame. A system is unstable if it is not stable in the
above sense. The instability is nonlinearly convective
(NLC) if, for all initird perturbations offinite extent and

finite amplitude, the flow relaxes to the basic state every-
where in the laboratory frame It is nonl. inearly absolute
(NLA) if there exists an initial condition offrnite extent
and amplitude and a location where the system does not
relax to the basic state.

The physical significance of these concepts may be
clarified by considering as an illustration the simple one-
dimensional Ginzburg-Landau equation
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where A represents the real amplitude of a bifurcating
mode that breaks a discrete symmetry of the problem.
The reaction term is chosen to be of the form R(A)
= —t)V(A)/BA, the potential density V(A) = —pA /2
—A /4+A /6 giving rise to a subcritical pitchfork bifur-
cation. The operator U08/Bx represents advection at the
velocity Uo taken to be positive. The Galilean invariance
is assumed to be broken by the presence of solid boun-
daries or by external forcing. For instance, experimental-
ly generated open flows may be modeled by an amplitude
equation which is to be solved in a semi-infinite domain
[0, +~[ with a suitable boundary condition at x =0.

In order to fully understand the eAect of the broken
Galilean invariance on the behavior of nonlinear states, it
is first necessary to recall a few classical results [9-121
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FIG. 1. Bifurcation diagram of spatially uniform states.
X

FIG. 2. Diagrams in the ( xt) plane displaying the dynamics
of droplets of bifurcated state: (a) Ao stable, A2 metastable;
(b) Ao metastable, A2 stable; (c) nonlinear convective instabili-
ty; (d) nonlinear absolute instability.

pertaining to the infinite domain and the parameter value
UO=O. Equation (1) then possesses the Lyapunov func-
tional

~(A) = [-,' (aA/Bx) + V(A)]dx.
stop at A2. Finally, when p & p~, the particle gains po-
tential energy to travel from Ap to A2 and vf(p) has to
correspond to a negative friction. This may also be seen
in the implicit formulation

V(A 2) —V(A p)
~f(p) =

f(aA/gx) «2d, '

obtained in the case p (0 by integrating (2) along the
heteroclinic orbit. Note that the velocity vf(p) has the
same sign as the quantity V(A2) —V(Ao).

When the advection velocity Up is diA'erent from zero
these considerations can be extended by resorting to the
definitions of nonlinear absolute (NLA) or convective
(NLC) instabilities. The range of metastability of the
basic state must then be separated into two regions: a
nonlinearly convective range where the expanding droplet
is limited by fronts moving in the same direction [Fig.
2(c)], and a nonlinearly absolute range where the droplet
expands in opposite directions [Fig. 2(d)]. As Uo is taken
to be positive this distinction only relies on the sign of the
asymptotic left front velocity: vg(p)=vf(p)+Uo. We
shall assume the existence of a negative critical pararne-
ter value p~ defining the transition between these two re-
gimes and such that vf(pg) = Up. Since vf(pg) (0,
pz is necessarily larger than p~. The following scenario
(see Fig. 3) holds for the dynamics of droplets of the A&

state initially embedded in the A p basic state: For

a V(A)
p dx r)A

(2)

with the boundary conditions A( —~) =AD and
A(+~) =Aq. Equation (2) describes a dynamical sys-
tem in x for a particle in a potential —V(A) with friction
coefficient vf. When p & 0 the unique value vf(p) corre-
sponds to a heteroclinic orbit linking the steady state Ap
at —~ to the bifurcated state A2 at +~. When p & p~
the particle loses potential energy to travel from Ap to A2
and vf(p) has to be positive in order for the particle to
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FIG. 3. Bifurcation diagram in the semi-infinite domain.

1932

One notes that L is minimum for uniform solutions that
also minimize the potential density V(A). The bifurca-
tion diagram is represented in Fig. l. On account of the
symmetry A —A, only positive values of the real am-
plitude A will be considered unless stated otherwise.
When p & —4, Ap=0 is the only minimum. When
—

4 & p & 0, there exist two minima at A p =0
and A2=(2 +dp+1/4)' . The amplitude A~ =(&
—Up+1/4) ~ corresponds to a maximum of V(A) and
therefore to an unstable solution. When p & 0, Ap =0 be-
comes a maximum of V(A), i.e. , unstable, A

~ disappears,
and A2 is the only stable solution. The parameter value

p~ = —]'6 defines the Maxwell point at which the solu-

tions Ap and Az have an equal potential density. The rel-

ative position of p with respect to p~ determines whether
a sufficiently large "droplet" of bifurcated state A2 sur-

rounded by the basic state Ao shrinks [p & pM, Fig. 2(a)]
or expands [p )p~, Fig. 2(b)l. When p~ & p & 0, Ao is

then said to be metastable (M) and A2 is stable (S).
When —

4 & p & p~, Ap and A2 exchange roles. Note
that, since Up=0, the system displays x- —x symme-

try. As a result, the velocity vf(p) of a front separating
the basic state at —~ from the bifurcating state at + ~
is positive (negative) when the basic state is stable (meta-
stable). The critical value p~ is such that ~ f(p~) =0.
The front velocity vf(p) satisfies the nonlinear eigenvalue

problem
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—
4 & p & p~, all droplets shrink back to the Ao state.

For pst & p & p~, droplets of suIIicient initial size expand
but are advected away. The Au state is linearly stable
but NLC. For p~ & p &0, droplets of sufficient initial
size expand and contaminate the entire medium. The Ao
state is linearly stable but NLA. For p &0, all initial
perturbations of the Au state grow and lead to the A2
state. The Av state is linearly unstable (LC or LA) and
NLA.

As a result, note that the range of metastability in the
laboratory frame is restricted to the interval p~ & p & 0.
An hysteresis loop is possible only between pz and p =0
as indicated in Fig. 3. This phenomenon is brought out

by examining the response to an excitation of constant
amplitude 8 applied at x =0. The amplitude 2 of a
steady solution must then satisfy

dA/dx

Ai

dA/dx

av(w)
dx t)A

d A

dx
(3)

In the metastable range considered here, three phase por-
traits of the dynamical system (3) in the (A, dA/dx)
plane (Fig. 4) can be distinguished depending on the rela-
tive position of p with respect to p~. The only orbits cor-
responding to steady solutions must stay finite as x goes
to infinity since they must have been reached from a lo-
calized finite initial state by minimizing the Lyapunov
functional X. Therefore allowable phase-space trajec-
tories of Eq. (3) end either in Ao =0 or in A2 as indicated

by continuous heavy lines in Fig. 4. Solutions pertaining
to a particular excitation amplitude 8 correspond to por-
tions of these trajectories initiated at the intersection
point with the vertical line A =B.

The marginal value p =p~ corresponds to the limiting
case where a heteroclinic orbit links Ao to A2 [Fig. 4(a)l.
The orbit ending at the origin possesses a maximum Ao
between A~ and A2. For the initial amplitude 8 =0 the
only solution is A(x) =0. For any 8) 0 there exists a
solution asymptotic to Ap as x +~. In the range
0 ~ 8 ~ Ao a second solution is possible which decays to
zero as x +. An hysteresis loop between the two
asymptotic states is therefore possible as the forcing am
plitude is varied in the range 0 & 8 ~ Aa [shaded region
in Fig. 4(a)].

For p & p~ [Fig. 4(b)], the flow is NLC, the hetero-
clinic orbit ending at A2 spirals around the A ~ state with
a minimum at A2. For any initial condition in the range
Av & 8 & A2 the unique steady solution decays to zero as
x +~. 2 2 may be viewed as a minimum threshold
value for the entrance perturbation to be efficient. " For
A2 ~ B ~ Ap two solutions are possible ending respec-
tively at the origin and at A2. For 8 & Ao a single solu-
tion exists and it is asymptotic to A2. Thus in the NLC
case, hysteresis is only possible for large enough forcing
amplitude in the range A2 ~ 8 ~ Ao [shaded region in

Fig. 4(b)]. Note that the system returns to the rest state
8 =0 as the forcing amplitude 8 decreases to zero.

dA/dx

=A

FIG. 4. Phase portraits of steady solutions: (a) p pz, (b)
p & pg, (c) p & p~. Shaded regions indicate the coexistence of
two states respectively asymptotic to Ao and A2 at + . Heavy
lines represent steady solutions asymptotic to Ao or A2 as
x +~ (continuous lines) or x —~ (broken lines).

For p & pg [Fig. 4(c)] the flow is NLA. The phase di-
agram is similar to the first case except that the allowable
orbit ending at A2 crosses the vertical axis. Therefore a
steady solution asymptotic to A2 at +~ exists even at
zero forcing. Multiple states coexist in the entire range
0 ~ 8 ~ Ao [shaded region in Fig. 4(c)]. Note, however,
that, in contrast with the NLC case, the system does not
return to the rest state 2 =0 as the forcing amplitude is
decreased to zero.

The predictions of the potential model (1) can be sum-
marized as follows: When a Aow is NLC, the only ob-
servable steady solution in the absence of forcing is the
rest state 8 =0. As the forcing amplitude is increased to
A2 and then decreased back to zero, one observes an hys-
teresis loop composed of the spatially decaying state
asymptotic to A =0 and a spatially gro~ing state asymp-
totic to A2. There is, however, a reversible return to the
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rest state 2 =0 when forcing is turned off. In contrast,
when a flow is NLA, both the rest state 2 =0 and the
spatially growing state asymptotic to A2 are observable in

the absence of forcing. Thus, starting from the rest state,
similar variations of the forcing magnitude trigger an ir-
reversible transition to a spatially growing state asymp-
totic to Ap. The rest state 2=0 is not recovered when

the forcing is suppressed. It is important to bear in mind
that the above conclusions assume both steady solutions
to be stable.

The analysis presented on this very simple model may
be extended in a straightforward manner to the
Ginzburg-Landau equation with complex amplitude and
real coe%cients. In fact the conclusions of the preceding
discussion rely only on the existence of a well-defined

speed for the front separating the basic state from the bi-
furcating state. A qualitative description of the possible
scenarios likely to arise in subcritically bifurcating open
flows has been outlined and a practical test has been sug-
gested to determine the nature of the bifurcation. There
is presently no detailed experimental confirmation of the
validity of this analysis. However, some preliminary ob-
servations [13] of the Gortler [Iow on a concave wall pro-
vide evidence for the NLC nature of the instability, in

qualitative agreement with the theoretical study of Park
and Huerre [14]: The nonlinear impulse response
displays the same features as in Fig. 2(c). Gortler vor
tices are not detected at zero forcing. Nonetheless, the
application of a localized steady excitation close to the
origin of the Bow gives rise to a spatially growing pertur-
bation for forcing amplitudes above a definite threshold.
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