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Nonclassical Field Dynamics in Photonic Band Structures:
Atomic-Beam Resonant Interaction with a Spatially Periodic Field Mode
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%'e consider the quantum electrodynamics of an atom uniformly moving through a single spatially

periodic field mode. The shape and periodicity of the field modulation can be designed by an appropriate
choice of a defect in a periodic structure that possesses a forbidden spectral band (a "photonic band
gap"). The design of the periodic modulation can improve our control over the evolution and properties
(e.g. , photon statistics) of nonclassical "Schrodinger-cat" states of the field, generated by resonant in-
teraction with the atom.

PACS numbers: 42.50.Dv, 42.25.—p, 42.50.Md, 78.65.—s

The quest for quantum electrodynamical (QED)
effects in atomic interactions with electromagnetic fields
has achieved spectacular success in studies of atomic-
beam propagation through high-Q single-mode microcav-
ities. The focus of these studies are dynamical effects
conforming to the Jaynes-Cummings model (JCM),
which describes the interaction of a two-level atom with a
single field mode that is spatially uniform along the
atomic path [1-3]. An intriguing feature of the JCM dy-
namics is that a field initially prepared in a quasiclassical
coherent state can evolve into a "Schrodinger cat": a su-

perposition of two quasiclassical states with different
mean amplitudes or phases [4,5]. The initial quasiproba-
bility distribution (Q function) of the field is split by the
interaction (via a purely unitary evolution [6,7], or via
atomic-state preselection or postselection [8-10]) into
two parts that counterrotate in the phase plane, alternat-
ing between a "cat" state as they move far apart, and ap-
proximate restoration of the initial field state as they
overlap [5-7]. Nonclassical properties of the field, such
as sub-Poissonian or oscillatory photon statistics and
quadrature squeezing, arise during the partial overlap of
the two Q-function parts [4,11]. The alternate splitting
and restoration of the Q function correspond to the de-

phasing ("collapse" ) and rephasing ("revival" ) of the os-
cillating terms in the atomic population inversion, each
term having a Rabi frequency associated with a different
photon number that contributes to the field [5,6).

These features of the JCM dynamics are currently
viewed as fundamental manifestations of the QED nature
of the field. Yet we may ask how sensitive the JCM dy-
namics is to the assumption, which is justified in existing
experimental setups [3,9], that the field is eff'ectively uni-
form along the atomic path. We shall consider here an
atomic beam propagating along and interacting with a
spatially periodic field mode on resonance. For atoms
that are sufficiently fast (with velocities above 10 cm/
sec) and low photon numbers, there is practically no spa-
tial diffraction or velocity change due to the field [12],
whence such spatial modulation is equivalent to periodic
temporal modulation of the field-atom coupling. In its
simplest form, this modulation is sinusoidal, as in the case
of a high-order mode of a micromaser cavity. It is partic-

Ir Q(r(t)) =(hco/2)' (It,s eq)gi(r=v, t+rj ) (2)

is the coupling energy of the vacuum field to the dipole
moment p,g for the atomic transition e g, normalized
in the structure volume V and having the resonant fre-
quency m =to,~. The polarization vector of the field mode

ularly timely to examine this situation with the advent of
novel structures, wherein all field modes can be inhibited

by the periodicity of the dielectric index in a spectral
band of forbidden dispersion, known as a photonic band

gap [13,14]. An allowed mode may be formed at a
chosen frequency within the band gap near a defect that
disrupts the structure periodicity [15). An atomic beam
propagating through a void in such a defect can resonant-
ly interact with this mode (Fig. 1). The appeal of such a
defect mode is that it can be designed to exhibit any
desired periodic or aperiodic modulation, not merely
sinusoidal. Its realization appears to be presently feasible
in the microwave domain (provided that low-absorption
materials are used, so as to achieve high-Q values)
[13,15). In the near future a single-mode field-atom in-
teraction (with negligible coupling to the continuum) at
an optical frequency promises to be more realizable in

such a structure than in a cavity [16].
As shown here, periodic temporal modulation of the

resonant field-atom coupling can drastically modify the
prominent dynamical features of the JCM, such as the
evolution of Schrodinger cats and the corresponding oscil-
lations of the atomic population inversion [17]. In addi-
tion to their inherent novelty and interest, these modified
features are shown to allow better control than their JCM
counterparts over the generation and properties of non-
classical field states. In particular, the photon statistics is
shown to be governed by both the periodicity and the
modulation shape of the field mode, thus demonstrating
the advantages of an appropriately designed defect.

The resonant interaction of a two-level atom moving at
a constant velocity v, through a spatially modulated
single-mode field is described by the Hamiltonian [2)

Hi= urn(r(t))(rs+a+cr at) (1)
Here o+ (cr-) and at (a) are the dipole and field raising
(lowering) operators, respectively, whereas
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FIG. 1. Inset: Atomic-beam propagation through a rec-
tangular defect in a square lattice of dielectric rods. (a) Q
function of conditionally prepared Schrodinger cats evolving

from a coherent state (ao-6) for an atom moving in resonant
periodic mode. The cats are drawn in the phase plane at
/max z/ao for different Z: thin contour, hajj,„0.5; thick con-
tours, jji,„=n;dashed contour, &~,„=2|r (b) S. napshots of
the T evolution of the thick-contour g function at intervals of
03Dt3T-0.2 Note the slug. gishness (freezing) near hajj,„=z.

Here 03 is the operator of atomic inversion, and

is ei, and its spatial amplitude gi(r) is the eigenfunction

of the wave equation in the structure for either F. or 0
polarization.

ln this Letter we shall consider structures in which (see

below) the single-mode eigenfunction gi(r) is a real,

periodic function of z =v, t (a standing wave in z). The
advantage of a real gi(r(t) ) is that it allows the straight-
forward derivation of the evolution operator U(t) for the

entangled field-atom system governed by Eq. (1). In

analogy with Ref. [18] (in which 0 is time independent),
we can show that

U(t) = —,
' (1+o3)cosy(t)+ 2 (1 (T3) cosP(t)
—ia+ap '(1) sinp(t) —icr aty '(t) siny(t)

p(t) =(a a) '"0(t), y(t) =(aa ) '"0(t),
(4)

0(t) =„n(t')dt'.
As implied by Eqs. (3) and (4), the evolution of all atom-
ic and field observables is governed by the initial field dis-
tribution (or photon statistics), and the adiabatic phase
0(t), which is proportional to the integral of g1,(r(t) ) over
the atomic interaction (passage) time. We therefore
proceed to specify the field eigenfunctions g&(r(t) ).

In addition to Fabry-Perot or micromaser cavity eigen-
functions, we consider here the mode eigenfunctions of a
nearly periodic square lattice of rods with dielectric index

ej that are aligned in the y direction, so that the dielectric
index e of the structure varies with x and z. By applying
a magnetic field to the atoms, the dipole moment p,s is

selected to interact only with a y-polarized electromag-
netic field, whose mode eigenfunction satisfies the two-
dimensional (2D) scalar wave equation [19]

[(d'/dx'+d'/dz')+ e(x,z)to'/c']gy =0. (5)

A perfectly periodic square lattice with period P can
display appreciable photonic band gaps for the y polariza-
tion [19], even for moderate modulations of e(x,z) be-
tween e] and 1. On replacing, say, two z-directed rows of
rods over a distance L, &&P by rods with e2Wei, a rec-
tangular defect is created, with L, ))L =2P [Fig. 1(a)].
The eigenfunctions of local modes formed by such a de-
fect at discrete ai within the band gaps can be approxi-
mated, in complete analogy to electronic eigenfunctions
of semiconductor heterostructures with similar geome-
tries [20], to have the factorized form g~(ai, r) =y~(x,
z)Fj(co,x)Fz(ai, z). Here &p~(x, z) is a periodic, stand-
ing-wave eigenfunction of the perfect square lattice, eval-
uated at the allowed-band extremum nearest to co. For
ez ( ej, discrete "acceptor" modes [15] will arise just
above the top of the lowest F. polarization band, which
corresponds to a frequency coo and wave vector
ko= —(tr/P)(x+z) [19]. Then, p~(x, z) can be written
in the z-periodic form

a, (x,z) =pc, (x)cos(j trz/P) (6)

whose Fourier coefficients ci(x) are obtainable either nu-

merically [19] or analytically (in exceptional cases [21]).
The factors F] and F2 are envelope functions, each solv-

ing a 1D wave equation with the averaged "square-well
potential" [20] [aiji(e2 —ej)/c ] (for x or z within the de-
fect). The envelopes Fj or F2 therefore oscillate within
the defect, exponentially decaying outside of it (for the
lowest-order mode, F]F2—cosK x cosK, z, with K„i,)—&/L t, i) Then, for an .atomic beam collimated to pass
well within the defect, we obtain from Eqs. (4) and (6)

0(T=L,/v, ) = (g/2)g [cj(x=0)/jl[si (njco TD+6) +in(jai~T —p)]

Here [Eqs. (1) and (2)]

g = (to/2h ) jt'(p, s)F1(oi,x =0)/aug) (8)
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is the ratio of the vacuum Rabi frequency (for a static
atom) to rpD =trv, /P, which is the Doppler shift at the
resonant wave vector, or, equivalently, the inverse time to
traverse P/2. The envelope-function phase 6-toDT(P/
L, ) will be neglected in what follows. For a Fabry-Perot
or micromaser cavity eigenfunction, Eq. (7) is purely
sinusoidal, i.e., it has the j=l term only. As shown

n 0, 1,

below, it may be advantageous to use structures in which
the field and atom evolve with multiple harmonics of coo,
whose weight cj/j is appreciable.

The first feature to be evaluated here by means of Eqs.
(3), (4), and (7) is the evolution of the mean atomic in-
version (o, (T)) for an initially excited atom and a field
initially specified in the number-state representation by
the density operator pF(0) =P«p«(0) ~n)(n'~. We find

(03(T)) =Tr[pF(0)U(T)cr3(0)Ut(T)] = g p«(0) cos[2(n + I ) ' 8(T)]

=gp„„(0)p [J (A„,)+gJ, (A„,) o (2jp
n j 1 P

where A„J=2(n+1) 't pc~/j. The last equality in Eq.
(9) follows from the expansion of a cosine of an odd
periodic argument in terms of Bessel functions. The
periodicity of 8(T) compels (o, (T)) to exhibit a periodic
pattern of collapses and revivals, regardless of the initial
photon statistics Thu. s, revivals occur when 8(T) =0,
corresponding to DDT=0, rt, 2rt, . . . . This property of the
inversion is in sharp contrast to its counterpart in the or-
dinary JCM, wherein only Poissonian or sub-Poissonian
photon statistics can yield distinct revivals [1,2]. Howev-

er, the initial photon statistics p„„(0)still plays an impor-
tant role in the temporal patterns of Eq. (9), in that it
determines, along with gcj/j, the number of contributing
(interfering) harmonics jptpD, and thereby the width of
the dephasing intervals. The broad photon-number distri-
bution of the thermal field causes the higher harmonics to
coalesce, forming broad dephasing intervals. Narrower
dephasing intervals (or wider oscillation revivals) obtain
for the Poissonian photon-number distribution (a coher-
ent field) with the same (n) and gcj, since fewer A„Jcon-

rpDT)], (9)

tribute. For an initial vacuum state, only gcj/j deter-
mines the number of harmonics and the modulation depth
[17]. In the litnit A„J((1 (corresponding to low (n)
and/or an atom traversing P/2 much faster than a vacu-
um Rabi cycle), the leading term of J2~(A„i) implies
that only the harmonics with p=l and j such that
ct/j-c~ are appreciable in Eq. (9). Thus, the atomic
evolution is also controllable by the form of spatial modu-

lation, which determines the cl in Eq. (7).
The collapses and revivals of the atomic inversion are

paralleled by the splitting (dephasing) and restoration
(rephasing) of the quasiprobability distribution that
characterizes the field. In what follows, the initial condi-
tions are assumed to be an atom in the excited state ~e)

and a coherent field state ~ap), with ~ap~)&1. As the
atoms emerge from the structure at time T, the ensemble
of excited atoms is selected. This conditional measure-
ment [10] projects out the following field density opera-
tor, using Eqs. (3) and (4):

pF' (T) =C[(e~U(T) pF (0) (~e)(e ~) Ut(T) ~e)] =gp„„(0)cos[(n+ I ) ' 8(T)]cos[(n'+ I ) ' 8(T)](~n)(n'~ ), (10)
nn'

where C is a normalizing constant. The Q function associated with Eq. (10), i.e., the diagonal element of p$ with

respect to a coherent state ~a), is found to be, for the chosen initial conditions, to first order in the deviation
n —(n) =n —

~ ap~
't

Q, (T) =(a(pP' [a) = (C/4)exp( —(a( —[ap( ) exp[i(a(8(T)/2]g ja*apexp[i8(T)/2(ap(]I "/n!+(8 —8)

This form implies that Q, (T) has two peaks, at a~ 2

=apexp[+ i8(T)/2~ap~], corresponding to two super- phase between the split Q-function parts is unconstrained
posed parts of the Q function. Hence, the field evolves in T, going through successive periods of 2tr. (b) Near
into a Schrodinger cat superposition when the mean rela- the maximum relative phase p, „

the cat evolution is
tive phase &=8(T)/~ap~ is large enough to make the two sluggish, as the counterrotation rate of the two Q-
Q-function parts nonoverlap ping. function parts is then &=8/(ap~ =0 [Eq. (7)]. Hence,

Two properties distinguish the cat behavior of Eq. (11) the cat is nearly "frozen" near p,„[Fig.1(b)], whereas
from its JCM counterpart [4-7]: (a) The cat is con- its JCM counterpart evolves at a roughly constant rate of
strained to oscillate periodically in toDT between p;„=0 P= 0/ap [0 being the vacuum Rabi frequency as in Eq.
and [Eq. (7)] p,„=gpj(ct/j)sin(jtr/2)/~ap~ [Fig. 1(a)]. (2), but without temporal modulation].
Collapses and revivals of the atomic inversion occur, re- Nonclassical (sub-Poissonian or oscillatory) photon
spectively, as p alternates between large values, corre- statistics and quadrature squeezing are obtained whenev-

sponding to nonoverlapping parts of the Q function, and er the two parts of the Q function partly overlap [4]. The
small values, for which the initial Q function is roughly advantage of the field evolution considered here is that
restored. In the limit g~ 1, p, „

is so small that the Q the T interval over which the required overlap persists is
function remains strongly overlapping at any T (no col- controlled by g and ~ap~. Consequently, one can achieve
lapses). By contrast, in the ordinary JCM the relative sub-Poisson statistics for a considerably wider and more
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FIG. 2. Left: Photon statistics of an overlapping Q function
(@=0.5, a0=6), evolving similarly to thin contour in Fig. I.
The Mandel parameter Z=(&dn ) —&n))/&n), where &Ant) is the
photon-number variance, is plotted vs DDT/rr. Z (0 corre-
sponds to sub-Poissonian statistics. Solid curve, sinusoidal
modulation; dashed curve, periodic modulation with significant
third harmonic (ci/ci =0.6), resulting in wider sub-Poissonian
intervals. Right: idem, for ordinary JCM (dotted curve).

regular range of T intervals than in the ordinary JCM
(Fig 2). . We have verified numerically that the sub-
Poissonian features of our model are less sensitive to a
Gaussian spread in velocities, or in ao, than their JCM
counterparts.

The spatial modulation shape can also help control the
field evolution and its photon statistics. Higher harmon-
ics (cj with j & I) introduce additional minima or maxi-
ma into the T dependence of 0 [Eq. (7)]. Hence, there
are more points near which the rate &tr vanishes, and the Q
function is frozen. The resulting eA'ect on photon statis-
tics is demonstrated in Fig. 2.

To conclude, the interplay between the initial quantum
distribution and the spatial periodicity of a single-mode
field at resonance with a uniformly moving atom has been
shown to yield unique, intriguing dynamical features: (i)
The atomic population inversion exhibits periodic oscilla-
tion "revivals, " for any initial field state, even a classical-
like thermal distribution. (ii) Superposed quasiclassical
field states (Schrodinger cats) periodically alternate be-
tween complete overlap and a maximal phase separation
&tr,„,which is adjustable by the atomic velocity and/or
mean photon number, as opposed to the unrestricted vari-
ation of the phase separation in cats governed by the
JCM [5,6]. (iii) By selecting the velocity and spatial
modulation shape, the cat can be nearly frozen for the
desired fraction of the evolution period near the ex-
tremum points of its phase separation, a feature that has
no analog in ordinary JCM cats. When this freezing cor-
responds to an overlap of the two cat parts, sub-
Poissonian photon statistics results for a much ~ider
range of interaction times than in the JCM. Consequent-
ly, the present model can achieve enhanced stability of
nonclassical field properties against fluctuations of the
atomic velocity or the initial field preparation (e.g. , initial
statistical spread of coherent states).
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