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2v Double Beta Decay and Self-Consistent Self-Energies
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We have performed quasiparticle-random-phase-approximation (QRPA) calculations of the vv transi-
tion matrix for Ge, Se, and ' Mo, using effective interactions derived from the Paris and the Bonn
NN potentials. Unlike earlier QRPA calculations where the self-energy corrections to the single-

particle spectra were suppressed, we have retained these corrections as given by our interactions. In this

way our calculations are able to avoid the commonly encountered difficulty of QRPA instability near

gpp 1 . The M " matrix elements of Ge, Se, and ' Mo given by our calculation, with no adjustable
parameters, are in reasonably good agreement with recent direct counter experiments.

PACS numbers: 23.40.Hc, 21.60.Jz, 27.50.+e, 27.60.+j

Although the lepton-number-violating neutrinoless
double beta decay has yet to be observed, thanks to some
new and impressive experiments [1-4], an increasing
number of nuclei have been observed to undergo the two-
neutrino double beta decay predicted by the standard
model.

The two-neutrino decay half-life [5-7] may be written
as Tit2 =52,/M ", where S2, contains the phase-space
factors, and M ' is the nuclear transition matrix element
(usually approximated by the Gamow-Teller contribution
M$T). For use in the quasiparticle-random-phase-
approximation (QRPA) formalism, M$T may be written
as
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where the particle-hole angular momentum quantum
i

number has J= l. E„—E; is the nuclear excitation ener-

gy of the intermediate states, m, is the mass of the elec-
tron, and Qpp is the double-beta-decay Q value. a, b

(c,d) are summed over all possible proton (neutron)
single-particle (s.p. ) states. Note that we only need sum

over I
+ intermediate nuclear states.

To calculate the above nuclear transition matrix ele-
ment, we need to know the respective nuclear wave func-

tions and energies. One usually obtains such information
from model-space eff'ective interactions V,g. It is a com-
mon practice to employ some empirical V,& such as a del-

ta interaction. Another approach is to derive V,ir from

modern free nucleon-nucleon interactions such as the
Paris [8] and Bonn [9,10] potentials. There have been a

number of calculations deriving such V,g for light nuclei

[11,12]. For heavy double-beta-decay nuclei, such calcu-
lations become much more difficult. Staudt, Kuo, and

Klapdor-Kleingrothaus have used 6-matrix efective in-

teractions derived from the above potentials in QRPA PP
calculations for ' Ge [13] and for ' Te and ' Te [14].
Their results of the 2v matrix elements MGT for these nu-

clei are, however, considerably higher than the respective
experimental values.

In this work we shall perform 2vPP decay calculations
for ' Mo, Se, and Ge using a QRPA framework,
with the required eAective interaction V,p derived from
the Paris and Bonn nucleon-nucleon potentials. A main
diff'erence between our present calculation and earlier
ones concerns the self-energy corrections to the s.p. spec-
trum. As to be discussed later, these self-energy correc-
tions will turn out to be very important for the 2v matrix

elements. They are calculated and retained in the present
work, while in earlier calculations they were suppressed,
assuming that their eA'ects were already contained in the
empirical Woods-Saxon s.p. spectrum.

A well-known difficulty in earlier 2vPP calculations is

that the calculated MGT matrix elements were frequently
unstable with respect to a particle-particle interaction
strength parameter gpp in the vicinity of its physical
value, i.e., gpp 1.0. We shall see later that our present
calculation no longer seems to have this undesirable trou-
ble.

The effective interaction used in the present work is

calculated from a QTQ G matrix defined by the equation
[11]

GT(co) = V+ VQ2p Q2nGT(to), (2)1

n co —T 2t

where Q2& is the two-particle (2p) projection operator for
all such states lying outside the model space. A Q2n pro-

jection operator specified by (n i, n 2, n 3) = (6, 15,28)
[13,14) is used in the present work. We numerically
solved the above equation according to the formally exact
technique of Tsai and Kuo [11,15].

The pairing force is in large part responsible for the oc-
currence of double beta decay. To take pairing into ac-
count, we follow the BCS theory and solve the familiar

gap equations [16],

A, =(2j,+1) 'i g(2j, +I)'i u, v, ( —I) 'G(aacc0),

~here 5, is the pairing gap and v, the occupation proba-

1900



VOLUME 69, NUMBER 13 PHYSICAL REVIEW LETTERS 28 SEPTEMBER 1992

bility (u, + v, =1) for a given s.p. state a. The particle-
particle interaction G is defined

G(abcdJ) = —
—,
' (1+b,b) 'i

(5)

&& (1+S,d ) ' (abJM i V,rri cdJM) . (4)
The self-energy is given by

p, =2(2j, +1) 'g (2J+1)vb G(ababJ),
bj

and the quasiparticle energy E, is defined as
def

E, = [(e, —p, —X) '+ A,'] ' ', (6)

where e, is the bare s.p. spectrum, and A, the chemical po-
tential.

The above are a set of self-consistent equations, to be
solved within a set of chosen active orbits. For example,
in our present calculation the active orbits are the nine

orbits in the Oflp and Ogld2s shells. They are the
valence orbits outside the Ca core, and hence the bare
s.p. energies c are those corresponding to the situation of
only one valence nucleon outside the Ca core. Evident-

ly p represents the self-energy correction to the s.p. ener-

gies due to the interaction with other active nucleons.
In earlier calculations one tried to determine p empiri-

cally, by treating the combined quantity e —p as the ex-
perimental or empirical s.p. energies. The intention is to
determine p more reliably, since the effective interaction
used may not be accurate enough and thus the calculated

p may have a large uncertainty. There is, however, a
subtle point. The pn QRPA framework is employed in

the present work, as in earlier calculations. Within this
framework the above BCS equations are solved for pro-
tons and for neutrons separately and independently; the
interaction between protons and neutrons does not enter
either. Let us consider '4qMo5s as an example. We use

an active space consisting of nine proton orbits and nine

neutron orbits outside the Ca core. Thus ' Mo has 22
active protons and 38 active neutrons. When one solves

the proton BCS equation, the index b of Eq. (5) is

summed over only the nine proton orbits with the sum of
(2jb+1)vp normalized to 22. The neutron orbits do not
enter Eq. (5). Hence p, represents the interaction of
proton a with all the other active protons only. In other
words, p contains the self-energy corrections only among
the active protons. Hence the quantity e —p here does
not correspond to the experimental proton s.p. energies in

Mo, which contain not only proton-proton but also
neutron-proton interactions among the sixty active nu-

cleons outside the Ca core. The situation for the neu-

tron BCS equation is the same.
Thus the usual procedure, adopted in earlier QRPA

calculations (see, for example, [13,14,17-19]),of setting

p equal to zero and at the same time replacing s by the
empirical Woods-Saxon s.p. energies such as those for

Mo is in fact somewhat debatable. Presumably the
Woods-Saxon s.p. energies contain the interaction be-
tween one particular nucleon and all the other 99 neu-
trons and protons, which is not consistent with the BCS

framework as discussed above. For the latter, the s.p. en-

ergies e should contain only the interaction with the forty
neutrons and protons in the Ca core.

A less controversial and more straightforward pro-
cedure would be to calculate p as given by the BCS equa-
tions and use the s.p. energies as defined by the nuclear
core, Ca in the present case, consisting of s.p. orbits
below those included in the pn QRPA calculation. We
have chosen this procedure, and have noticed that the re-
sults of these two approaches are importantly different.

In Fig. 1, we compare the neutron s.p. spectra given by
the above two approaches. On the right-hand side of the
figure we plot a Woods-Saxon neutron spectrum ap-
propriate for ' Mo. The left-hand side is our calculated
e —p spectrum. We also display our calculated X, or Fer-
mi surface. Note that the positions for the g9i2, g7i2 lev-

els are quite different for the two spectra. Also the
present spectrum has a generally larger energy spread.
Our results are obtained as follows. The bare s.p. ener-

gies e, are taken from those corresponding to a 20Ca core,
which are deduced mainly from experiment [20,21].
Then the BCS equations for i42Mo are solved using a
Paris-force G matrix calculated via the techniques de-
scribed above and a model space containing the fp and

gds shells.

These BCS results are then used in a standard pn
QRPA secular equation where parameters gpp and g~h are
introduced [13,14]. The former parameter adjusts the

strength of the particle-particle interaction which enters

the pn QRPA equation, and similarly the latter for the
particle-hole interaction. When using realistic effective

interactions one should use of course g»=g~h 1. The
stability of the QRPA equation with respect to the in-

teraction strengths may, however, be tested by artificially

varying the strength parameters g„q and g» in the vicini-

OR7/2

Woods

Saxon

0—

-10—

1E13/2

2i1/2
1d6/2
OR9/2

Ore/2

lpl/2

1p3/2

Of7/2

143/2
2s1/2
OR7/2
1c16/2

OR9/2

1p1/2
1p3/2
Of6/2

Of7/2

FIG. l. Effect of self-energy on neutron single-particle spec-
trum for ' Mo.
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(w* —w„)(X X„—Y*V„)=0. (7)

For regions containing only real eigenvalues, this yields

ty of 1. We note for future reference that the QRPA
eigen vectors obey the orthogonality relation %*X~
—Y,*V~=0 for a&P. Their normalization is taken as
X,*X,—Y,*V, l. (It has been pointed out, however

[22], that this normalization is not always appropriate
within a model-space framework ).

We now present our results for QRPA calculations of
two-neutrino transition matrix elements MaT [13]. As a
first calculation, we use as the efI'ective interaction our
model space bare G matrices calculated with the Paris
potential. A plot of MQ vs gran with g~h=1 is shown in

Fig. 2(a) (we only vary gran since QRPA calculations to
date show a greater sensitivity to the parameter gpp than

g~h). Curve II was obtained by replacing the BCS-
calculated s.p. energies, e, —p„with the Woods-Saxon
energies. Curve I was obtained by using the s.p. spec-
trum e, —p„where e, is a Ca s.p. spectrum, and p, is

the calculated self-energy obtained from (5). The experi-
mentally derived matrix element M, „'n is denoted by a cir-
cle plotted at gpp 1. As we cannot know the sign of
Mzzp we plot the circle at + Mzzp.

The rather dramatic dip in curve II is due to the fact
that near gran = I, QRPA breaks down and contains un-

physical complex solutions. One may readily verify from
the structure of the QRPA matrix [13] that QRPA eigen-
vectors must satisfy

the familiar RPA orthogonality relations. It does not,
however, specify RPA eigenvector normalizations. For
complex eigenvalues, (7) requires X*X —Y*Y =0.
This means that near the onset of complex eigenvalues, at
least one of the QRPA eigenvectors has the property that

i Y, i ix, i. Thus as we approach the onset of complex
QRPA eigenvalues, the usual QRPA eigenvector normal-
ization condition iX, i

—
i Y, i

=1 causes the normaliza-
tions iX, i and i Y, i for at least one state, a, to individual-

ly diverge and dominate the contributions to MaT. To
emphasize this point, we plot in Fig. 2(b) the maximum

I Y.I vs gran. Thus the rather dramatic behavior of Ma2T in

curve II is therefore not surprising.
We point out that the existence of a region of complex

eigenvalues is not a surprise, and that essentially all
QRPA equations would yield complex eigenvalues for
sufficiently large values of g~n. It is simply the presence
of complex eigenvalues in the physical gran= 1 region that
prevents us from extracting meaningful results from cal-
culation II. In curve I, we use the calculated e —p s.p.
energies as discussed above. In this case, we find that the
region of complex QRPA eigenvalues lies a comfortable
distance beyond the physical gpp 1 regime. This is im-
portant, since as we see in Fig. 2(b) calculation I does not
contain unphysically large iY, i normalizations. We also
note that curve I lies relatively close to the matrix ele-
ment deduced from experiment. This agreement is rather
encouraging considering the rather large cancellations in-

volved in the calculation of M$T.
As a result of its improved performance with regard to

QRPA-induced stabilities, we shall use from now on the
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FIG. 2. (a) MoT calculated for ' Mo with (curve I) the cal-
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s.p. energies corresponding to curve I in the calculation of
MPT. In Fig. 3 we display MGT vs gtt, for ' Mo using
the Paris potential for two approximations to the effective
interaction. Curve 8 is calculated with the bare G matrix
only. Curve 8 is calculated including the bare G matrix
and the core-polarization diagrams (i.e., diagram 63ptg of
Ref. [11]). Starting from the same set of bare s.p. ener-
gies and using the same treatment for the self-energies,
we have also calculated Ge and Se using the Paris po-
tential. Results are also displayed in Fig. 3 with quite
similar behavior. We note that in all three cases the
experitnental value lies within or close to the range
demarked by the bare and bare plus core polarization
curves. We have repeated the above calculations using
the Bonn potential, and obtained results which are quite
similar to Fig. 3.

The use of effective interactions derived from the Paris
and Bonn potentials has also been investigated by Staudt,
Kuo, and Klapdor-Kleingrothaus [13,14] for calculations
involving tellurium and germanium, but with a Woods-

Saxon treatment of the s.p. spectrum. Although they find

that when including renormalization corrections, the re-

gion of complex eigenvalues occurs for g~~ & 1, their pre-

dicted matrix elements are -4 times larger than experi-
ment. In this work we employed a different treatment for
the s.p. spectrum; we retain the self-energies as derived

from the BCS theory. We recall from Fig. I that our
self-consistent spectrum and the Woods-Saxon one have

small but qualitatively important differences. Apparently
these differences have changed the QRPA MGzT results in

a dramatic way. For all three nuclei we considered, Ge,
Se, and ' Mo, we started from the same set of bare
Ca s.p. energies. And for all three cases we see that the

calculated matrix elements exhibit a fairly weak depen-

dence on g~~, up to and slightly above g~~=l. A per-
sistent difficulty in earlier calculations of MQ for ' Mo
is its particularly strong dependence on g~~ in the vicinity
of g» =1. It seems that this difficulty is alleviated by our
present treatment of the s.p. self-energies.

As far as we know, most earlier QRPA calculations
have imposed a shift to the calculated excitation energy
spectra so that the calculated lowest 1+ excitation ener-

gies coincide with the experimental values. This shift is

not imposed in our present calculations. We have found

that our results are not significantly changed if such a
shift is included. In fact our calculation does not contain

any adjustable parameters.
In summary, we presented results of 2vPP calculations

using the quasiparticle-random-phase-approximation
method with model-space V,tr derived from the Paris and
Bonn nucleon-nucleon potentials. The BCS calculations
were performed for the nuclei Ge 82Se, and 'Mo us-

ing an f-p and g-d-s shell-model space with the inner
Ca shells treated as a closed core. %e have used a Ca

s.p. spectrum with the self-energies p calculated and re-
tained. %'e showed that the choice of a %oods-Saxon

s.p. spectrum made by other authors would lead in our
calculation to complex QRPA eigenvalues in the physical
regime, which is perhaps a main cause for the often en-
countered QRPA instability in the vicinity of g~~ =1. We
presented our results, which are in fact all rather close to
experimentally obtained 2v matrix elements for Ge,

Se, and ' Mo.
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