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We find the conditions for the existence of a new class of defects. These defects arise from the non-
trivial homotopy associated with the spontaneous breaking of subgroups of the full symmetry group of
the field theory and may be vie~ed as topological defects embedded in a larger theory. Examples in-
clude monopole configurations in an O(4) model and a new vortex solution in the Weinberg-Salam mod-
el.

PACS numbers: 11.15.Ex, 11.17.+y

The discovery [1-3] of vortex solutions in the
Weinberg-Salam model of the electroweak interactions
raises the possibility that such solutions may exist in a
wider class of field theories. In this Letter, we show that
this is indeed the case and give general conditions under
which such solutions will exist. We give two new exam-
ples of such defects: The first is a monopole solution in

an O(4) model while the second example describes a new

string solution in the Weinberg-Salam model.
It should be mentioned at the outset that this new class

of defects is not guaranteed to be stable and the stability
needs to be treated case by case. However, from the ex-

amples of the semilocal string [4-6] and the Z string [7]
in the Weinberg-Salam model, we have learned that the
stability of these string solutions is generally parameter
dependent and, only after a careful analysis, can one de-
cide when the defect is stable. The situation in the case
of the monopole is clearer due to the very general analy-
ses of Brandt and Neri [8] and Coleman [9]:The mono-

poles in the new class are always unstable [10,11].
We shall find the conditions for the existence of defects

by considering the general energy functional for static
field configurations,

where, i,j =1,2, 3 and the group index, denoted by lower

case latin indices, runs over the number of generators of
the symmetry group. The field strengths and covariant
derivatives are defined by

G' =tl A' —cl A'+gf' 'A A' (2)

D; =8; —i ,' gT'A;, —

where T' are the generators of the symmetry group G
and g is the charge. For simplicity we have considered a
compact group and, hence, only one charge in the model
but it makes no difference to the arguments below if we
have a direct product of groups with several different
charges.

The potential for the Higgs field p may be taken to be
the usual Mexican hat potential. This results in the spon-
taneous breaking of the symmetry G once 4t acquires a
vacuum expectation value (VEV). The final symmetry

group will be denoted by H.
We first wish to consider a nontrivial field configura-

tion P=Pn, A =8 that describes a defect [12). This
means that the fields are in the configuration of a string
[13] or a monopole [14]. These defects are composed of
components of the Higgs field and some of the gauge
fields. Therefore we adopt the notation that the Higgs
field components and the gauge fields that constitute the
string or monopole will be labeled by upper case latin and

by greek indices, respectively. The other fields will be la-
beled by corresponding barred indices. That is, the defect
configuration is P =P(, Af =BS, P =0, and Af =0.
(Note that a complex scalar field is considered as having
two components and so all the components of lit are real. )

Before proceeding further, for clarity, let us summarize
our notation for the various indices. In the general
analysis that follows, i,j, . . . denote spatial indices;
a, b, . . . denote group indices and run over the entire
number of group generators; J,EC, . . . label those com-
ponents of p which are nontrivial in the defect
configuration; a,P, . . . label those gauge fields that are
nontrivial in the defect; barred indices such as J, IC, . . .

and tt, P, . . . label the trivial (vanishing) components of p
and the gauge fields, respectively.

We now wish to find the conditions under which the de-
fect configuration extremizes E. For this to happen, the
linear order variation of E, when p and A; are perturbed
around (po, 8;) must vanish. Then, the basic idea is to
rewrite the energy functional as

(Edefect+ bEdefect) +~Eother (4)

when the fields are perturbed around the defect con-
figuration. The term Ed f t represents the energy in the
defect configuration and only depends on the fields that
make up the defect. The variation in the energy function-
al Ed f t is written as BEd,f„t and this only depends on
the perturbations in the fields of the defect. The last
term, bE,th„, contains variations in the energy due to the
perturbations in the "extra" fields —in the fields that do
not constitute the defect.

We will assume for the time being that we have chosen
the defect configuration suitably so that, if the model only
consisted of the fields labeled by the unbarred indices,
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then the field configuration really does describe a defect.
In other words, if the energy functional was simply given

by Ed f t, then the configuration iPO, B would minimize

Ed,f„t. This can be guaranteed if the model given by
Ed f t alone has topology'cal defects. Therefore, if the

symmetry group of Ed,f„t, G), breaks down to H] once
the P acquire a VEV, then we need [iT'iso) '=0. (i 3)

In addition we must require that ld;pl in (8) be quadra-

tic in the barred perturbations. [The unbarred perturba-
tions only enter the BEd r t term in (4).] This can be

achieved provided iT iPO has vanishing components in the

barred directions. That is,

rr„(Gi/H~)&1, n =1 or 2, (s) The conditions (11)-(13)have a simple geometric in-

terpretation. The condition (13) may be rewritten as

for there to be a defect solution in the truncated model
given by Ed,p„t. This immediately implies that the varia-
tion SEd fggt is quadratic in the perturbations. (It can
further be assumed that the defect is stable in itself and
therefore BEd,f„t is non-negative up to quadratic order in

the perturbations. This is certainly true of Nielsen-
Olesen strings with unit winding number and t Hooft-
Polyakov monopoles with unit magnetic charge. ) The
next task is to see when BEpth will be quadratic in the
per turbations.

Consider the G,PjG j term in E first. To decompose the
energy functional in the form of (4), we write

G'G' =(r) ~' &~'+g—f"&'&')'
+(& &' —& &'+gf'"'& &')'

(Note that lower case latin indices run over the entire
number of generators. ) For the right-hand side to be of
quadratic order in the "other" perturbations, we should
not have any terms that are linear in the gauge fields la-
beled by the barred greek indices. This can only be if

[e'"' yo)
' =0 (i4)

for arbitrary co,. In other words, &0 must lie on the orbit
of the subgroup G~. Now with (13) in (10), the condi-
tions (11) and (12) can be rewritten as

[e'"' yo]
I= iP(+ O(a)') . (is)

Therefore, infinitesimal group elements not belonging to
the subgroup G ~ should rotate po in directions orthogonal
to the orbit of G ~ [1Sl.

The potential for the Higgs field must also be quadratic
in the perturbations. This is automatically true for the

Mexican hat potential since that can be written as
2

2

v(y) =& g(y')'+g(y')'- " (i6)
J J 2

which does not contain any terms of linear order in p . If
the potential is not simply the Mexican hat potential but
of some other form, the condition that the potential must

satisfy may be written as

f~P&'=o=f~Pr =f~Pr (7) v;(y, ) =o. (i7)

d; =ri; —i —,
' gT'A

J = ,' g(y'T'd;y (d;—y)'T'y]. — (io)

Therefore, for l D; ill to be quadratic in the perturbations,
we need J for the defect configuration to be zero. The
defect fields must satisfy their own equations of motion
and so we cannot impose any additional requirements on
their spatial dependence. A little algebra then yields the
following two conditions:

iPo T r)iPO'
yJ(T'T'+ T'T') yo =0. (i 2)

This condition implies that the algebra of the generators
T' corresponding to the gauge fields making up the de-
fect must close. That is, the algebra must be a subalge-
bra and must generate a subgroup of G. This subgroup is

precisely the symmetry group of Ed f t and has been pre-
viously denoted by G~.

Next, we consider the term lD;ill in E. We write

ID;yl'= Id yl'+ I;&'+
where the terms that have been omitted are already quad-
ratic in the perturbations 3 and

In the examples that follow we will only consider the
Mexican hat potential for which (17) is always satisfied.

The conditions (S), (7), (11)-(13),and (17) are the
conditions necessary for the field configuration po, 8,' to
extremize the energy functional. The first two conditions
are requirements on the group structure of the theory.
The conditions (11)-(13)may be viewed as conditions on
the field po whereas (17) is the condition on the potential.
We now consider two examples.

The first model we consider is the O(4) O(3) model

in which the Higgs field is a four-vector. There are six
generators of O(4) which we call r', o'' where i =1,2, 3.
The Lie algebra is

[r, r l = —ieijk&k [&i oj) le(ijkok

[o~, 0'1] = iei jkr k'
Explicitly, (r')jk =ie'j" for j,k =1,2, 3 and the other
components of r ' are zero. Also, (o')Jk =i (Sjbk 4
—6,48;k) for j,k =1,2, 3,4.

The r generators form a subalgebra and the corre-
sponding subgroup is O(3),. We will choose &0 such that
O(3), is broken down to O(2), . Then the monopole
solution is
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PiHP = [At'] iHp, A =0, (19)

where the subscript tHP stands to represent the
't Hooft-Polyakov solution, the index a runs from 1 to 3
and the index a runs from 4 to 6. The A~' fields are asso-
ciated with the r' generators and the AJ' fields with the
o'. Now we can check that the conditions (5), (7),
(11)-(13),and (17) are satisfied. (5) is satisfied because
z2(O(3)/Q(2)) Z. (7) is clearly satisfied by the Lie
algebra in (12). (11) is satisfied because o'po has a
nonzero fourth component only and hence is orthogonal
to po. (12) and (13) are similarly true and (17) is au-
tomatically satisfied by the Mexican hat potential.
Therefore (19) describes a monopole solution embedded
in the O(4) model.

The stability of monopoles has been investigated in

Refs. [8,9] under very general conditions. The analysis
proceeds by first constructing (all) configurations that
look like monopoles asymptotically in any non-Abelian
theory with a compact group. Then the analysis shows
that this asymptotic configuration is unstable to develop-

ing any other massless gauge fields that are present in the
theory provided the monopole is not protected by topolo-

gy. In our case, the residual symmetry is O(3) and there
are three massless gauge fields. One of the gauge fields is

the radial magnetic field of the embedded monopole.
Since the monopole is not topological, the monopole
configuration is unstable towards driving the remaining
two massless fields away from zero.

We should also mention that we can construct embed-
ded global monopole solutions. The construction is iden-
tical to the O(4) monopole described above. Now, since
there is no long-range magnetic field, the analyses of
Refs. [8,9] do not apply. However, a detailed stability
analysis shows that the embedded global monopole solu-
tion too is unstable [16].

We now turn to embedded string solutions. By argu-
ments similar to those for the O(4) monopole, it is easy
to construct string solutions in a model with O(N) sym-

metry. However, we will not treat these in any detail.
Instead we consider the Weinberg-Salam model as our
second example. The symmetry breaking is SU(2)
&U(1)y U(1) and the Higgs field is in the fundamen-
tal representation. In this scheme, there is no SU(2) sub-

group of the initial symmetry group which is broken
down to U(1) and hence we do not expect isolated mag-
netic monopole solutions. (Monopoles connected by
strings are still possible [3].) However, there are several
U(1) subgroups that are broken down completely and so
there should be a corresponding number of string solu-
tions. One such solution is the Z string described in Refs.
[1,2]. We now show that at least one more solution is
present.

Consider the U(1) subgroup generated by the SU(2)
generator r'. A vacuum expectation value of p will

break this U(1) subgroup completely. Since x~ (U(1)/1)
=Z, this will give us r strings in the Weinberg-Salam
model.

Let us find the r ' string by examining each of the con-
ditions (5), (7), (11)-(13),and (17). The condition (5)
is satisfied since any nonvanishing po breaks the U(1)
completely and ni(U(1)/I ) =Z. The condition (7) is
trivially satisfied since we are considering a U(1) sub-

group which is Abelian. The condition (11) requires

4o= (20)

where p~ and p2 are real fields [17]. Condition (12) is
satisfied by the SU(2) generators since, for this group,
the generators are Hermitian and s'z~+r~r'=0. One
can also check that PJz '1 go =0 provided po has the form
in (20). [I is the generator of U(1)i.] It is easy to see
that (13) is satisfied since i r 'po has the same form as Po
in (20). Finally, (17) is always satisfied by the Mexican
hat potential.

So now we can write down the r ' string solution:

cos0
Oo=fNo(r);„ng, ~'=[~ ]No,

W =0=8' =8
(21)

0
cos8+i sin&

Z;=[At]No, W =0=At =A;.
(22)

It is easy to see that the Z string is distinct from the r '

string since the gauge invariant hypercharge field

strength, Fq;~, is nonzero in the Z string but zero in the
r ' string. Hence, the two solutions described above are
two diferent string solutions in the Weinberg-Salam
model [20].

The stability of the Z string has been analyzed in detail
in Ref. [7] and it was found that a region in parameter
space exists where the strings are stable to small pertur-
bations. The r string solution, however, is likely to be
unstable for all values of the parameters. This conjecture
is based on the observation that the ~ ' string is embedded
entirely in the SU(2) group and the U(1)i. group is
merely a spectator. This corresponds to the case of the Z
string with sin 0~=0 for which the results of the stabili-
ty analysis [7] always show instability.

At this point we ~ould like to make a general remark
regarding the stability of embedded string solutions. It

where we have used the notation of Ref. [18], the sub-
script NO stands for the Nielsen-Olesen solution, and
(r, e) are polar coordinates in the xy plane. (The string
is taken to lie along the z axis. )

For comparison, we also give the previously found Z
string [19]:
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seems to us that the stability of the string depends cru-
cially on the presence of several diAerent gauge coupling
constants in the model. Then, difterent gauge fields in

the model couple to the Higgs field with diAerent
strengths. Let us suppose that there is only one gauge
field with the largest coupling constant (for example, the
Z field in the Weinberg-Salam model). If this is the

gauge field of the string, then the string is similar to the
semilocal string. (In the limit that the coupling constant
is infinitely larger than the other gauge coupling con-
stants, the string is exactly the semilocal string. ) The sta-
bility of the semilocal string then suggests that the em-
bedded string can also be stable for some range of pararn-
eters.

To summarize, we have found the conditions necessary
for the existence of a class of defects in field theories.
This class of defects occurs due to the nontrivial topology
associated with the spontaneous breaking of subgroups of
the full symmetry group. In other words, these defects
are ordinary topological defects that have been embedded
in a bigger theory. Vortex solutions will be extremely
common since one can always find U(l) [or O(2)] sub-

groups that are broken down completely; monopole solu-
tions will also be fairly common. We have applied the
general conditions to two specific examples: First we

found monopole solutions embedded in an O(4) model
and then we found a new string solution in the
Weinberg-Salam model.
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