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Cosmic Microwave Background Probes Models of Inflation
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Inflation creates both scalar (density) and tensor {gravity wave) metric perturbations. We find that
the tensor-mode contribution to the cosmic microwave background anisotropy on large-angular scales
can only exceed that of the scalar mode in models where the spectrum of perturbations deviates
significantly from scale invariance (e.g. , extended and power-law inflation models and extreme versions

of chaotic inflation). If the tensor mode dominates at large-angular scales, then the value of AT/T pre-
dicted on 1

' is less than if the scalar mode dominates, and, for cold-dark-matter models, bias factors
b ) I can be made consistent with Cosmic Background Explorer (COBE) DMR results.

PACS numbers: 98.70.Yc, 04.30.+x, 98.80.Cq

The recent measurements [I] of large-angular-scale
anisotropy in the cosmic microwave background (CMB)
by the Cosmic Background Explorer (COBE) Differ-
ential Microwave Radiometers (DMR) provide impor-
tant experimental support for the hot big bang model.
Perhaps the most striking conclusion to be drawn from
the COBE DMR data is that they are consistent with a
scale-invariant spectrum of primordial density (scalar)
perturbations.

A scale-invariant spectrum is consistent with inflation,
which predicts perturbations generated by quantum fluc-
tuations [2], and also with models that generate perturba-
tions by classical eAects, such as theories with cosmic
strings, textures, global monopoles, and nontopological
excitations. Inflation also produces a spectrum of gravity
waves (tensor metric Auctuations) with wavelengths ex-
tending beyond the horizon, providing a possible means
for distinguishing it from the other scenarios. Recently it

was speculated that the anisotropy detected by the COBE
DMR might be largely due to inflation-induced tensor
rather than scalar perturbations [3]. In this Letter, we

show that tensor dominance of the CMB quadrupole an-

isotropy is indeed possible for a class of inflationary mod-

els. We find that the ratio of tensor to scalar contribu-
tions is directly tied to the rate of inflationary expansion
and the "tilt" of the spectrum of density perturbations
away from scale invariance. Models that permit tensor
dominance include extended inflation, power-law infla-
tion, and extreme versions of chaotic inflation. While the
COBE DMR results alone cannot distinguish tensor from
scalar perturbations, we show how additional measure-
ments on small-angular scales may distinguish the two.
We also discuss the implications for large-scale structure.

CMB temperature anisotropies on large-angular scales
(~ 1') are produced by metric fluctuations through the
Sachs-Wolfe eA'ect [4]. These temperature Auctuations

can be decomposed into spherical-harmonic amplitudes;
for scale-invariant scalar-mode fluctuations, the quadru-

pole is given by [5]
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where H is the Hubble parameter, p is the scalar field
that rolls during inAation, V(p) is its potential, mp)
=1.22x10' GeV is the Planck mass, and the final ex-
pression follows from the slow-roll equation of motion,
3H& = —V'. Here ( ) indicates an ensemble average
over all observers in the universe. The right-hand side is

to be evaluated W -60 e-foldings before the end of
inflation, when fluctuations on CMB length scales crossed
outside the horizon [6]. The corresponding formula for
tensor fluctuations is

T=—(a2)T =7.7V/mp), (2)

(az ) T V'mp)= 0.28
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2
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where, more precisely, this is the ratio of the ensemble
averages for T and S. To compare with experiment, one
must take into account the variance from this ensemble
average associated with a single measurement (so-called
"cosmic variance" [1,8]).

Note that the coefficients in Eqs. (I) and (2) were de-
rived assuming strict scale invariance. Since we will find

below that models with T/S ~ 1 deviate from scale invari-

ance, we have numerically computed the coeScients in

obtained by evaluating Eq. (2. 15) in [7]. The ratio of
tensor to scalar quadrupole anisotropies is, therefore,
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Eqs. (1) and (2) for "tilted" spectra and find that the nu-

merical coefficient in Eq. (3) changes very little (5 10%)
for the tilts consistent with the COBE DMR results.

Extended [9] and power-law [10] inflation models can
be described in terms of a potential of the form V(p)
= Voexp( —Pili/mpi), where P is constant or slowly time
dependent. In extended inAation p is related to a field

that is coupled to the scalar curvature (e.g. , a dilaton or
Brans-Dicke field), which leads to a modification of Ein-
stein gravity. The modified gravity action can be reex-
pressed via a Weyl transformation as the usual Einstein
action plus a minimally coupled scalar field (p) with an
exponential potential. In the simplest example of extend-
ed inflation [9], P =v 64tr/(2ro+ 3), where to is the
Brans-Dicke parameter. For an exponential potential,
Eq. (3) implies

—=0.28P =T 2 56
S 2o)+ 3

(4)
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where iti,„d=p mpi/48n, we find that [131

(5)
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where we have set N =60. For the chaotic inflation mod-

els usually discussed, p =2 and 4, the scalar mode dom-

inates: T/5=0. 11 and 0.23; however, for extreme mod-

els, p & 18, the tensor mode could dominate.
New-inAation models [14] entail a slow roll from p = 0

to p =a down Aat potentials of the Coleman-Wein-
berg form, V(p) =Ba /2+BE [In(p /a ) —

—,
' ], where

8= 10 ' for density perturbations of an acceptable size.
In new inflation T/S also depends upon p~,. paralleling
the previous analysis,
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The ratio T/S&1 for to&26 (P&1.9). Interestingly,
co%26 is almost precisely what is required to avoid unac-

ceptable inhomogeneities from big bubbles in extended
inAation [11]. (Though co~26 is inconsistent with solar-

system limits for Brans-Dicke theory, these constraints
are evaded by giving the Brans-Dicke field a mass. )

Chaotic inflation models [12] typically invoke a poten-

tial of the form V(p) =A, pp, where p))mpi initially, and

rolls to &=0. The ratio of tensor to scalar anisotropies

can be expressed in terms of &tv, the value of the scalar
field N-60 e-foldings before the end of inflation. Using

the relation

Scalar dominates tensor for v & 10rnpI, and, naively, it

~ould appear that T/S can be made greater than unity
for a&10mpi. However, one finds that &6O is very close
to o. for u 10mpt, violating the implicit assumption,

$6O ((a. That is, for a)) mpi, iti rolls down the steeper
(harmonic) part of the potential close to the minimum, so
that V(p)=4Ba (p —a), just as in chaotic inflation
with p =2. In this case, the tensor mode does not dom-

inate (T/S =0.11).
We will now show that T/S cannot be arbitrarily large

by deriving model-independent relations between T/S,
the rate of inflation, and the tilt of the density perturba-
tion spectrum away from scale invariance [15]. The ratio
of tensor to scalar perturbations is controlled by the
steepness of the potential, V'mpi/V; cf. Eq. (3). During
inflation, this quantity also determines the ratio of the
kinetic to potential energy of the scalar field [16],

2 P /V=(V'mpi/V) /48tr, which in turn determines the
efl'ective equation of state (p =yp) and the evolution of
the cosmic-scale factor (R ix t ): y = [ 2 p

—V]/[ 2 p
+ V] and m =2/3(1+y) (during inflation y and m can

vary). It is simple to show that the tensor perturbations
are characterized by a power spectrum

~ bP ~ k"' and

the scalar (density) perturbations by ~bf ~

ee k" [17],
where nT=(m —3)/(m —1). For the models considered
in this paper, the difference between the scalar exponent
n and the tensor exponent nT is not significant, and we

will henceforth use n to represent both [18]. In the limit

of exponential inflation, i.e., 2 p /V 0, m ~ and the

tensor perturbations are scale invariant (nT I ), and in

most models [19] the scalar perturbations are also scale
invariant (n 1).

The above relationships together with Eq. (3) allow us

to express the expansion-rate index m and the power-
spectrum index n (for N-60) in terms of T/S:

S 1 S
m =14 —+—=14

T 3 T
(9)

3(T/s)
21 —(T/S) 7 S

[We remind the reader that the numerical coefficients
here depend upon that in Eq. (3), which depends weakly

on the ratio T/S for n&0.5.] If the tensor mode is to
dominate —i.e., T/S & 1 —then m must be less than about
14 and n must be less than about 0.85. (Conversely, in

models where the expansion is exponential and the spec-
trum is scale invariant, the ratio of tensor to scalar is very
small. ) From the fact that inflation must be "superlumi-
nal" (m & 1), we can use Eq. (9) to derive an approxi-
mate upper bound, T/S~ 20 [20]. However, the COBE
DMR [1] bound on the power-spectrum index n,

n = 1.1 ~ 0.6, which implies that n & 0.5 when T/S & 1,
leads to the stronger limit T/S +3 (and m & 5). (Doubt-
less, there are yet stronger bounds on n based upon struc-
ture formation. )
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FIG. 1. Temperature autocorrelation function (from the

Sachs-Wolfe effect) for tensor and scalar modes each normal-
ized to the COBE DMR quadrupole anisotropy using a scale-
invariant spectrum and the COBE DMR window function [I].
Tensor and scalar modes are distinguishable at small angles but
the COBE DMR results (data superimposed) are unable to
resolve the difference. We have not shown the cosmic variance
which leads to additional uncertainty. (The cosmic variance for
the scalar contribution is shown in Fig. 3 of Ref. [I].) CDM
predictions [23] for the scalar contribution to C(0) (h =0.5 and

Ab =0.1) is C(0) =980 pK for b =I and C(0) =460 pK for
b = 1.5.

We can now apply these results for the specific models
for which we found T/S & I, extended and chaotic
inflation. In extended (or power-law) inflation, the power
spectrum is tilted according to n = (2' —9)/(2ro —I ) and
m=(2ro+3)/4. Using the COBE DMR limit, n&0.5,
we find a plausible range, 26 & ro & 9. For chaotic
inIIationt n = 1

—p/120 and m = 240/p, leading to a
somewhat extreme range, 60 +p ~ 18.

Tensor contributions have significant implications for
CMB measureinents. First, the COBE DMR results
alone do not distinguish scalar from tensor contributions
to the anisotropy; see Fig. 1. However, the COBE DMR
results, combined with ineasurements on smaller-angular
scales, might distinguish the two. The COBE DMR mea-
surement implies (a2)=(4.53+ 2.5)XIO ', where we

should keep in mind that this is a measurement of
(aq )T+ (a 2)q. Going to smaller-angular scales, the scalar
contribution to the CMB anisotropy grows relative to the
tensor, but the net contribution to small-angle measure-
ments is diminished compared to no tensor mode at all;
see Fig. 2. (We are assuming that no late reionization
washes out fluctuations on small-angular scales. ) Hence,
comparing large- and small-angle anisotropy measure-
ments can, in principle, separate the scalar and tensor
contributions. Of course, a careful analysis would have to
include the uncertainties due to cosmic variance.

The tensor mode can seriously aff'ect the interpretation
of CMB measurements for large-scale structure, regard-
less of the form of dark matter. As an example, the
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FIG. 2. Constraints to the CMB anisotropy from various ex-
periments and predictions for the South Pole anisotropy experi-
ment on I' for CDM models (0 =I, f)ii =0.1, h =0.5), using
the filter function from [24]: Open circle, CDM with b = I, the
best-fit CDM model to the COBE DMR if T/S (( I; open trian-

gle, CDM with b =2, consistent with the COBE DMR only if
T/S& I; closed triangle, upper bound if COBE DMR were

detecting the Sachs-Wolfe effect from pure tensor mode
(T/S»1).

best-fit cold-dark-matter (CDM) model to the COBE
DMR results assuming T/S((1 has a bias factor b=1.
(The bias factor 8= I/os, where crs is the rms mass fluc-

tuation on the scale 8h ' Mpc. ) If, however, the tensor
contribution to the CMB quadrupole is significant, then
the extrapolated density perturbation amplitude at 8/f

Mpc is reduced, and the best-fit CDM model has b & 1;
see Fig. 2. Two related eA'ects combine to increase b:
The power spectrum is tilted (less power on small scales
for fixed quadrupole anisotropy), and scalar perturbations
only account for a fraction of the quadrupole anisotropy.
We find, very roughly,

b=100 ' " / 41+T/S =10 / / VI+ T/S, (10)

where "100"is the ratio of the scale relevant to the quad-
rupole anisotropy, X —1000h ' Mpc, to the scale Sh

Mpc. For T/S =0.53, 1.4, 2.5, and 3.3, the bias factor is
b=1.4, 2.4, 4.6, and 7.8 (and n =0.92, 0.78, 0.59, and
0.44). While these numbers should only be taken as
rough estimates, the trend is clear: Larger T/S permits
larger bias.

In sum, if small-angular-scale measurements find

/3. T/T significantly lower than that extrapolated from the
COBE DMR quadrupole (see, e.g. , [21]), there are now

at least two possible explanations consistent with

inflation. Either reionization has washed out the small-

angle fluctuations, or tensor fluctuations contribute
significantly to the COBE DMR observations [22]. In

the latter case, what can CMB studies tell us about
inflation? Our analysis suggests a remarkable conclu-
sion —COBE DMR combined with sma11-angular-scale
measurements can directly relate the key cosmological
parameters that govern large-scale structure, such as the
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bias factor b in CDM models and the power-spectrum in-

dex n, to the microphysical parameters that control
inflation.
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