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Black Hole in Three-Dimensional Spacetime
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The standard Einstein-Maxwell equations in 2+1 spacetime dimensions, with a negative cosmological
constant, admit a black hole solution. The 2+1 black hole—characterized by mass, angular momentum,
and charge, defined by flux integrals at infinity—is quite similar to its 3+1 counterpart. Anti-de Sitter
space appears as a negative energy state separated by a mass gap from the continuous black hole spec-
trum. Evaluation of the partition function yields that the entropy is equal to twice the perimeter length

of the horizon.

PACS numbers: 04.20.Jb, 97.60.Lf

The fascinating properties of the black hole, classical
and— especially—quantum, have long made it desirable
to have available a lower-dimensional analog which could
exhibit the key features without the unnecessary compli-
cations. It is the purpose of this Letter to report that the
sought-for analog does exist in standard 2+1 Einstein-
Maxwell theory with a negative cosmological constant.

For simplicity we will first ignore the coupling to the
Maxwell field. The generalization to nonzero electric
charge will be indicated afterwards.

The action is
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where B is a surface term and the radius / is related to
the cosmological constant by —A=/ "2 The equations
of motion derived from (1) are solved by the black hole
field
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where the squared lapse N2(r) and the angular shift
N*(r) are given by
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with —o0 <t < o0 0<r<oo and 0=<¢<2n.

In this Letter we will focus our attention mainly on the
physical properties of the solution. The geometric struc-
ture will be briefly touched upon at the end and its de-
tailed study will be provided in a forthcoming publication
[1l.

The two constants of integration M and J appearing in
(2) are the conserved charges associated with asymptotic
invariance under time displacements (mass) and rotation-
al invariance (angular momentum), respectively. These
charges are given by flux integrals through a large circle
at spacelike infinity.

The lapse function N(r) vanishes for two values of r

given by
1/2} ] 1/2
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Of these, r+ is the black hole horizon. In order for the
horizon to exist one must have

M>0, |J|<=Mi. (3)

In the extreme case |J| =MI, both roots of N?=0 coin-
cide.

Note that the radius of curvature / =(—A) ~"2 pro-
vides the length scale necessary in order to have a horizon
in a theory in which the mass is dimensionless. If one lets
I grow very large the black hole exterior is pushed away
to infinity and one is left just with the inside.

The vacuum state, namely, what is to be regarded as
empty space, is obtained by making the black hole disap-
pear, that is, by letting the horizon size go to zero. This
amounts to letting M — 0, which requires J— 0 on ac-
count of (3). One thus obtains the line element

dske=—(r/D*dt2+(r/1) “2dri+ride?. 4)

As M grows negative one encounters the solutions stud-
ied previously in Refs. [2,3]. The conical singularity that
they possess is naked, just as the curvature singularity of
a negative mass black hole in 3+1 dimensions. Thus,
they must, in the present context, be excluded from the
physical spectrum. There is, however, an important ex-
ceptional case. When one reaches M = —1 and J=0 the
singularity disappears. There is no horizon, but there is
no singularity to hide, either. The configuration

ds?=—=0+G/Dde?+ 11+ (r/D? " dr2+r2dg?

(anti-de Sitter space) is again permissible.

Therefore, one sees that anti-de Sitter space emerges
as a “bound state,” separated from the continuous black
hole spectrum by a mass gap of one unit. This state can-
not be deformed continuously into the vacuum (4), be-
cause the deformation would require going through a se-
quence of naked singularities which are not included in
the configuration space.

Note that the zero point of energy has been set so that
the mass vanishes when the horizon size goes to zero.
This is quite natural. It is what is done in 3+1 dimen-
sions. In the past, the zero of energy has been adjusted so
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that, instead, anti-de Sitter space has zero mass. Quite
apart from this difference, the key point is that the black
hole spectrum lies above the limiting case M =0.

The 2+1 black hole has thermodynamical properties
similar to those found in 3+1 dimensions [4]. In the
steepest-descent approximation, the free energy F divided
by the temperature is given by the value of the Euclidean
action evaluated on the Euclidean continuation [5] of the
black hole field (2). The surface terms appearing in the
action are here crucial. They must be constructed so that
the action truly has an extremum on the class of fields
considered [6]. In the variation one must allow changes
in the fields contributing to the surface integrals giving M
and J, but must hold fixed their momenta (appropriate
variational derivatives of the action on the boundaries),
which become the “thermodynamical conjugates” [7].
These conjugates are the period S of the Euclidean Kil-
ling time (inverse temperature T ') and the rotational
chemical potential— which turns out to be the negative of
the angular shift N? evaluated on the horizon (“angular
velocity™).

To determine the surface terms, we found it best, both
for conceptual and practical reasons, not to work with the
covariant form of the action (1), but to start instead with
its Hamiltonian version

I'={ Vg, —~ N# — N'#)d*x di +B' .

The surface term B’ differs from B in (1) (the volume in-
tegrals of I and I' differ by a surface term).

Working with the Hamiltonian action has the following
advantages: (i) Since the metric is time independent, the
value of the volume piece of the Hamiltonian action is
equal to zero when the constraints hold. Thus, the sur-
face terms are everything, even in the presence of the
cosmological constant. (ii) One knows right away the
surface term that must be added at infinity without need
to regularize. For the Euclidean action, it is simply the
period B of Killing time multiplied by the mass (by
definition of the mass).

After infinity has been dealt with, there remains only to
make sure that the variational derivative of the action
should vanish on the horizon. This makes it necessary to
include in Bgy two further “surface terms” at r=r4.
They turn out to be equal to minus two times the proper
perimeter length of the horizon (to cancel the variation of
the Hamiltonian constraint) and BN*(r4)J (to cancel the
variation of the momentum constraint).

One thus gets for the Euclidean action

IEuc=ﬂM—47tr++ﬂN°(r+)J. (5)

But, Ig,.=F/T, where the free energy is F=M —TS
— X u;C; and the p’s are the chemical potentials thermo-
dynamically conjugate to the conserved charges C;.
Therefore, Eq. (5) confirms that g and —N*(r4+) are the
inverse temperature and the chemical potential corre-
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sponding to J, respectively. It also shows that the entropy
is equal to twice the perimeter length of the horizon,

S=2L=4nr4. (6)

From (6), one may evaluate the temperature of the
black hole,

T =
oM 2nr+

QQJ—I=LE:LE
J

This expression coincides with the periodicity in Euclide-
an Killing time needed to make the Euclidean black hole
geometry regular at the horizon. One may also verify
that N*(r+) =T(3S/8J ) u.

Note that as the horizon disappears, the temperature
goes to zero in contrast with the 3+1 case. On the other
hand, the extreme rotating hole (J=M/) has zero tem-
perature and nonzero entropy, just as the 3+1 case.

Now, we briefly discuss how the electromagnetic field
is brought in. One includes the following additional con-
tributions in the action: (i) The electromagnetic energy
and momentum densities are added to # and %,
respectively. (ii) A term n'4; is added to n7g;. (i)
The Gauss law constraint is incorporated by adding
+ [ d*xdt Aor’; to the volume piece of the action. (iv)
This makes it mandatory to include in Bg,. a new surface
integral equal to Ao(r+)Q. Here Q is the electric charge
given by a flux integral at infinity, and equal to the con-
stant value throughout space of the radial component z".

The only nonvanishing component of the electromag-
netic vector potential may be taken to be

Ao(") = an(r/ro) .

The only modification of the metric (2) is that the
lapse function in (3) must be replaced by

N?=N{gmo)+ 3 QAo(r) .

The free energy acquires an extra term — Ao(r+)Q and
the entropy is again equal to twice the proper perimeter
length of the black hole. The horizon exists for any value
of Q provided the bound (3) on J is obeyed [8].

Last, we turn to some comments on the geometry of
the black hole. For simplicity, these comments are re-
stricted to Q=0 (no Maxwell field). In that case, one is
dealing with a spacetime of constant negative curvature
(the Riemann tensor is a constant multiple of an antisym-
metrized product of metric tensors). It is well known [9]
that such a spacetime must arise from identifications of
points in anti-de Sitter space through a discrete subgroup
of its symmetry group O(2,2). In this case, the discrete
subgroup is generated by one element, the exponential of
a particular Killing vector. In terms of the embedding

_u2_02+x2+y2=_12

of anti-de Sitter space in flat four-dimensional space that
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Killing vector is given by

Lt[a 9

T P T4ex

r— 9 9
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Throughout anti-de Sitter space this vector can be
spacelike, null, or timelike. The whole of the black hole
geometry is the region where & is spacelike. This region
is incomplete. Its boundaries are the surfaces &2=0
which correspond to =0 in the metric (2). One cannot
continue past these boundaries because & becomes time-
like and the identification would produce closed timelike
lines.

The rich structure of the 2+1 black hole is remarkable
given the simple nature of gravitation in three spacetime
dimensions [10]. One may hope that its study will pro-
vide further understanding of the black hole, especially at
the quantum level.
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