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Towards a Singularity-Proof Scheme in Numerical Relativity
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Progress in numerical relativity has been hindered for 30 years because of the difBculties of avoiding
spacetime singularities in numerical evolution. We propose a scheme which excises a region inside
an apparent horizon containing the singularity. Two major ingredients of the scheme are the use
of a horizon-locking coordinate and a Bnite difFerencing which respects the causal structure of the
spacetime. Encouraging results of the scheme in the spherical collapse case are given.

PACS numbers: 04.20.Jb, 02.70.+d

Numerical studies of the Einstein equations promise to
deepen dramatically our knowledge of general relativity,
astrophysics, and cosmology. Shapiro and Teukolsky [1]
suggested that the "Holy Grail of numerical relativity"
is a code that (i) avoids singularities, (ii) handles black
holes, (iii) maintains high accuracy, and (iv) is capable
of running forever. These four difHculties in numerical
relativity are closely tied to each other. Black holes, and
within them spacetime singularities, may be formed after
some evolution, even if none exists initially. The presence
of such objects implies that the dynamical range of the
calculation is large, with very different length and time
scales involved. This makes it diKcult to maintain accu-
racy or even to keep the code from crashing in numerical
evolution.

The traditional way to deal with this problem is to use
the coordinate degrees of freedom to avoid the "extreme"
regions. With "the many fingers of time" in relativity,
one may evolve other regions in space without evolving
the region in which a singularity is about to form Many.
diff'erent types of singularity-avoiding slicings have been
proposed and studied in detail (see, e.g. , [2—4]). This idea
of using the freedom in slicing the spacetime to avoid sin-
gularities is ingenious but not perfect. In the vicinity of
the singularity these slicings inevitably contain a region
of abrupt change near the horizon, and a region in which
the constant time slices dip back deep into the past in
some sense. Depending on the details of the choices of
the spacetime coordinates, the code will sooner or later
crash due to these pathological properties of the slicing.
The problem can appear as the development of spikes
in the spatial metric functions [2], the steepening of spa-
tial gradients [1], "grid stretching" [1] or large coordinate
shift [5] on the black hole throat, etc.

Hence it is important to investigate other ways to han-

dle singularities and black holes in numerical relativity.
Cosmic censorship suggests that in physical situations,
singularities are hidden inside black hole horizons. With
the problematic region of numerical evolution mostly in-
side the horizon, it is tempting to cut away this region
from the numerical calculation by imposing a boundary
condition on or slightly inside the horizon. To an outside

observer no information is lost since the region cut away
is unobservable. There is then no singularity to crash the
code, the observable region can be evolved, the dynamic
range is drastically reduced so accuracy is easier to main-
tain, and there is in principle no physical reason that the
code cannot run forever.

Using a horizon boundary condition by itself is not a
new idea [4, 6—9]. However, it is nontrivial to implement
a horizon boundary condition in dynamical evolution [9).
The boundary condition to be imposed on a black hole
horizon, which is a one-way membrane [10], should pre-
sumably be some sort of outgoing (into the hole) bound-
ary condition. However, except for the case of linear,
nondispersive fields propagating in a flat spacetime, we
are not aware of any satisfactory outgoing wave bound-
ary condition in numerical calculation [11], let alone for
waves in relativity, which can be nonlinear and disper-
sive, and have tails and other complications [12].

In this Letter we demonstrate that the idea of a horizon
boundary condition in numerical relativity can indeed be
realized. In the next sections, we discuss the two ma-
jor ingredients for our successful implementation of it:
(i) a "horizon locking coordinate" (HLC) system which
ties the spatial coordinates to the spatial geometry, and

(ii) a finite differencing scheme that we call causal difFer-

encing (CD) which respects the causal structure of the
spacetime. CD is not only essential for the stability of
the code using the HLC, but also eliminates the need of
explicitly imposing boundary conditions on the horizon.
It is, in a sense, the horizon boundary condition without
a boundary condition: Since the horizon is a one-way
membrane, the quantities on the horizon can be afFected
only by quantities outside but not inside the horizon.
Hence, in CD, all quantities on the boundary can be up-
dated explicitly in terms of known quantities residing on
or outside the boundary, provided the boundary is in-
side the horizon. There is no need to impose boundary
conditions to account for information not covered by the
numerical evolution. Such a horizon boundary condition
is particularly desirable since it is general to all kinds of
source terms in the Einstein equations.

(A) Horizon locking coordinate. We use the numeri—-
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cal construction of the Schwarzschild spacetime to illus-
trate the idea of locking the horizon. As shown in [5],
the numerical construction of a Schwarzschild spacetime
is nontrivial. In all nine differencing schemes and for
all choices of coordinate conditions studied in [5], prob-
lems arise after an evolution in time of about 100M with
reasonable choices of grid parameters. To facilitate com-
parison with the results of [5], we write the line element
in the same form:
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FIG. 1. The evolution of the radial metric function A and
the coordinate position of the AH are plotted for both the
BHS code and the HLC code. The dashed line marked "Free
Horizon" shows the coordinate position of the AH without the
HLC, while the vertical dashed line is the "Locked Horizon. "
The solid curves marked "Free A" show the evolution (in time
intervals of 10M) of the radial metric function A with no shift,
while the lower solid lines, which do not change after 5M,
represent the locked case.

ds = (—n + Q AP )dt + 2Q APdt drj

+@ [Adr) + Br) (d8 + sin 8dg )].
Such a line element is easily generalized to one which
is suitable for numerical study of axisymmetric space-
times [13], and it includes both the radial gauge [14] and
the quasi-isotropic or isothermal gauge [1, 15].

In [5], the initial data used in evolving the
Schwarzschild geometry are determined by time sym-
metry and conformal flatness [16], that is, the initial
slice is an Einstein-Rosen bridge. They find that the
most successful code is one which uses the MacCormack
or Brailovskaya difFerencing scheme, maximal slicing [2],
and zero shift. This code (denoted by BHS) is consid-
ered to be very accurate, but as for all codes designed
so far to handle black holes, it will develop difficulties
at late times. In Fig. 1, the dashed line labeled "Free
Horizon" gives the coordinate position of the apparent
horizon (AH) versus time. We see that the AH is rapidly
growing in radius. The solid lines give the value of the
radial metric component A every t = 10M. A spike is

rapidly developing near the AH, which eventually causes
the code to become inaccurate and crash. The inaccuracy
generated by the sharp spike shows up in both the vio-
lation of the Hamiltonian constraint (dashed line with

asterisks in Fig. 2) and the drifting of the mass of the
black hole from its initial value 2 [17].

A natural way to avoid this development of a sharp
peak is to tie the coordinate grid points to some geomet-
ric structure. To achieve this, we do the following: (i) We
make the coordinate position of the AH constant in time
after it grows to a certain Bnite radius. This determines
the shift P at the AH. (ii) After the horizon is locked, all

grid points are tied to it by requiring the radial metric
function A(t, r)) to be a constant in time. This deter-
mines the shift elsewhere. (iii) We drop most grid points
from the calculation inside the AH, leaving only a small
burr zone.

The results using the HLC are shown in the G.gures
[18]. Figure 1 shows that after the shift is phased in,
the AH is locked and instead of developing a spike as in
BHS or other codes, the radial metric function A is 1

everywhere and absolutely unchanged over time. In the
HLC with the singular region cut away, there is no need
to use any singularity avoiding -time slicing. To demon-
strate this freedom, we used a lapse that is constant in
time after t = 5M (but cr ) 0.3 everywhere), when the
AH is securely locked [19]. Without the sharp spike in
the metric function, Fig. 2 shows that outside the AH
the Hamiltonian constraint is satis6ed to more than an
order of magnitude better than in BHS by t = 100M,
and that the mass of the black hole remains essentially
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FIG. 2. (a) For each of the 4 runs we show a measure of
the error in the Hamiltonian constraint as a function of time.
Each point represents [Q™xGqq(j) ],i.e. , the sum of

2 =BAH
the error outside the horizon. The solid (dashed) lines are
obtained with (without) the AH scheme. (b) The mass of the
AH is shown as a function of time.
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constant for all time as it should be in this vacuum case.
(J3) Causal differencing. —One consequence of intro-

ducing a shift vector in the HLC is that inside the AH
the future light cone is tilted inward towards smaller g.
This feature is essential for our implementation of the AH
condition. It allows us to do without a specific bound-
ary condition for each type of ingoing wave since inside
the AH, data at a particular grid point depend explic-
itly only on past data from grid points at equal or larger
coordinate points. The existence of a shift calls for a
finite difFerencing scheme different from the usual one.
Here we illustrate this with a simple example.

Consider a scalar field P in a 1+1 fiat space: ds
dt'2—+ dx'2 and Bi2@ = 82, $. Suppose we break it up

for numerical evolution as [20] Bi P = 8, m and B,.~ =
8 P. If we introduce a constant shift P by the coordinate
change t = t' and x = x' —Pt', then the wave equation
becomes Big = B,ir + PB P and 8&~ ——8,$+ PB,ir. The
question is how to write down the finite difFerence version
of these two equations with a shift. One might naively
use, say, the usual leapfrog scheme:

yn+i yn n, -n yn yn

26t 26@ 26@

and likewise for the Bqx equation. However, a von Neu-

mann stability analysis shows that for any given C =
At/Ax, the scheme is unstable for a large enough P. For
example, numerical experiments show that for C = 1/3,
the instability quickly takes over with PC = 0.67.

To obtain a stable finite differencing, we do the follow-

ing: (i) Return to the unshifted wave equations in the
primed coordinate, which have untilted light cones. The
finite differencing can be written as usual. (ii) Transform
directly the finite difference equation into the unprimed
coordinates. In leapfrog scheme, this leads to

7t".

2hz
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where Ax' = Pkt Notice that. on the right-hand side,
the spatial derivative is centered at j+ PC, which is the
center (on the nth slice) of the causal dependence of the
point (n+ 1,j) where P is to be updated. This guaran-
tees that the region of causal dependence is completely
covered whenever C & 1.

The above procedure of obtaining a Rnite difference
scheme which observes the causal structure in the pres-
ence of a shift vector can be applied to any difference
scheme, just as for the leapfrog example here. The un-
derlying idea of CD is similar to the "upwind" differenc-
ing scheme used in hydrodynamic calculations [21, 22].
Several variations on the form of the CD operator will be
discussed in a future paper.

(C) The apparent horizon scheme in spherical col

lapse. —In this section we demonstrate these ideas with a
spherical collapse code. A self-gravitating massless Klein-
Gordon scalar field in an initial time-symmetric Gaussian
distribution is added to the black hole. Theoretical and
computational details will be presented in a future paper.
Here we summarize results for a typical case.

In Fig. 2(b) solid (dashed) lines represent the AH mass
MAH as a function of time for the cases with (without)
the AH scheme. The Arnowitt-Deser-Misner mass of the
entire spacetime for the case presented here was MADM =
2.62, while initially MAH = 2.08. With the Gaussian
distribution of the matter initially centered at rl = 2.5
and a width of bq = 0.5, the hole has absorbed nearly
all ingoing radiation by t = 15M. We see that with
the AH scheme, the solid line levels off after that time
as expected, with a mass of 2.33. We see no reQection of
radiation from the horizon. The dashed line shows results
with BHS where MgH continues to drift upward. In fact,
because of the large spike which develops in the metric
function A, the system becomes unstable at about t =
80M. The comparison of the accuracy [23] between the
AH and BHS schemes is also shown in Fig. 2(a). Again
we see that the violation of the Hamiltonian constraint is

increasing in the BHS case, while it is essentially constant
over time with the AH scheme, suggesting that the code is

capable of running for a long time. One final note is that
the AH scheme is also potentially much faster than one

using maximal slicing, which involves solving an elliptic
equation.

Conclusions. —Progress in numerical relativity has
been hindered for 30 years because of the difficulties of
avoiding spacetime singularities in the calculations. We
have presented working examples of how an apparent
horizon boundary scheme can help circumvent these dif-

ficulties in dynamic spacetimes.
There are a number of issues which must be addressed

in future work. For example, in some codes the con-
straint equations are solved explicitly for some compo-
nents of the extrinsic curvature or the metric during the
evolution. These elliptic equations would require bound-

ary conditions which may be difficult to formulate in an
AH scheme. However, in a free evolution scheme such
issues do not arise. Also, it is possible for a time slice
to hit a singularity before an AH is formed (regardless
of questions about cosmic censorship) [2]. This potential
problem can be handled by using a singularity-avoiding
slicing condition until the horizon is formed and locked
in place, as we have done. Another potential difficulty is
that the AH location may jump discontinuously, or mul-

tiple horizons may form. We believe this problem can
be handled by simply tracking newly formed horizons
and phasing in a new AH condition in place of the old

one(s). Multiple black holes can be handled by a vari-

ation of the HLC. We are beginning to examine these
issues now with both the 2D axisymmetric NCSA black
hole code [13], and a 3D code using harmonic slicing [24],
and will report on this work in future papers.
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