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On simple cubic lattices, we compute the low-temperature expansion for the energy of the Ising model
through 50 excited bonds in three dimensions and 44 excited bonds in four dimensions. We also give the
magnetization through 42 excited bonds. Our method is a recursive enumeration of states with given en-
ergies on a set of finite lattices with generalized helical boundary conditions. A linear combination of
such lattices cancels finite volume effects.

PACS numbers: 05.50.+q

High- and low-temperature expansions are a major
technique for the study of critical properties of statistical
systems and field theories. These series usually involve a
diagrammatic analysis which becomes rapidly more com-
plex as the order increases. Thus it would be interesting
to have an automated technique for the generation of the
relevant terms.

Here we consider the low-temperature expansion for
discrete systems. Our approach does not involve explicit
graphs, but relies on a recursive computer enumeration of
configurations. We illustrate the approach on the three-
dimensional Ising model.

Series expansion results have not thus far been com-
petitive with numerical simulations [I]. We believe our
method gives them the potential to do so. Our methods
are similar in spirit to those of Ref. [2], the primary
difference being our use of generalized helical lattices.

For the Ising model, the low-temperature series
amounts to an enumeration of low-energy excitations. We
find the infinite volume series for the energy through 50
excited bonds, substantially extending the previous result
[3] of 36, an order comparable to existing high-temper-
ature expansions [41.

The method relies on a procedure due to Binder [5] for
the exact solution of discrete models on small lattices. In
Ref. [6] these ideas were further developed. The present
paper adds further tricks to Ref. [7], which explored us-

ing these exact solutions to extract the low-temperature
series.

We consider the Ising model on a simple cubic lattice.
On each site i is a spin o; taking the values + 1. The sys-
tem energy is

E = g (1 —o;crt) —Hga;, (1)
4,J)

where the first sum is over nearest neighbors of spins,
each pair being counted once. Temporarily we set the ap-
plied field 0 to zero. The partition function is the sum of
the Boltzmann weight over all configurations

Z=ge t'E (2)

We define P(E) to be the number of states with a given

energy E. Thus, we have

6)V

Z= Z P(E)u
E 0

(3)

p'(E, I) =g p[E l5.(l,r'), I'] . —
I'

(4)

Here I' can differ from I only in the bits representing the
newly covered spins, and A(I, I') is the change in energy
from any newly changed bonds. For the present analysis
we add the spins one at a time. Thus, the sum in the
above equation is only over the two possible values for the
newly covered spin. After the lattice is grown, a sum over
the top layers gives the resulting P(E) =Pqp(E, I).

As the temperature goes to zero, so does the variable u.
Thus Eq. (3) is the low-temperature expansion for Z.
From it, we compute the series for the average energy,
(E)=2(u8/8u)ln(Z). Comparing this expectation be-
fore and after adding the last spin, we obtain the average
energy per new site. Expanding in powers of u gives

(E/N) =pe, u&.
J

We are interested in the coefficients e~ in the infinite
volume limit. Table I gives the values of these coef-
ficients through j=50 for the three-dimensional and
through order j=44 for the four-dimensional Ising mod-
els. Note that any enclosed group of flipped spins always
involves an even number of excited bonds; thus, the ex-

(5)

where N is the number of sites and u =e
We compute the coefficients P(E) exactly on small sys-

tems. We recursively assemble the system one site at a
time. The starting point is a list of all states and corre-
sponding energies for a single transverse layer of the lat-
tice. All spins outside this layer are frozen to the same
value; that is, the boundary conditions in the longitudinal
direction are cold. Spins are then sequentially freed to
build up the lattice in this third direction. We store the
exact number of states of any given energy and specified
exposed top layer. Storing the top layer in the bits of an

integer I, we define p(E, I) to be this count. When a new

spin or set of spins is added, we obtain the new counts
p'(E, I) as a sum over the old counts,
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TABLE I. The low-temperature expansion coeScients for
the average energy per unit volume for the three- and four-
dimensional Ising model on a simple cubic lattice.
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e; (3D)

0
0
0
12
0
60
—84
420
—1056
3756
—11 220
37 356
—118 164
389 220
—

1 261932
4163 592
—13680288
45 339000
—150244 860
500 333916
—

1 668 189060
5 579 763 432
—18 692 075 820
62 762 602 860
—211 062 133044
711 052 107060

e, (4D)

0
0
0
0
16
0
0
112
—144
0
1120
—2816
2032
11856
—46 704
66960
94576
—707472
1 545 120
—148 656
—9 522864
30130576
—30299 808

pansion only contains even powers of u.
Reference [7] showed a version of helical boundaries

whereby an n xn transverse slice is mimicked with only

(n + I )/2 sites. Here we extend this idea to include the

helicity into the longitudinal direction.
We build our lattices one site at a time; so, it is natural

to imagine the sites lying in a line. We do not, however,
consider sequential sites as nearest neighbors. Instead,
we introduce three integer parameters (h„,h~, h, ) repre-

senting the distance along the line to the nearest neighbor
in the corresponding x, y, or z direction. Labeling sites in

the sequence by their ordinal number i, the nearest neigh-

bors of site i are at i + h„i ~ hy, and i + h, . For con-
venience, assume h„&hy & h, . With this convention, all

sites more than h, steps back in the chain are covered.
Thus the recursion only requires us to keep explicit track
of the h, "exposed" spins at the end of our chain.

A minimal closed loop consists of a number of steps
such that n„h +nyhy+n, h, =0, where n; represents the
number of steps in the ith direction. On an infinite cubic
lattice the only solution is the trivial case n; =0. On a
finite lattice, any other solution represents a finite-size
correction. One way to visualize our lattice is to consider
an infinite lattice, and identify all points lying in a plane
orthogonal to h.

Flipping a chain of n spins along a minimal closed path

0.002

0.001—

0.000

—0.001—
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FIG. 1. The ratio rE defined in Eq. (6) in the vicinity of the
Ising critical point. The series expansion for this quantity was

Pade approximated in z =3u /(I + 3u ) as the ratio of two po-

lynomials, and the curves are labeled by the highest power of ."
appearing in the numerator.

generates a state with 4n excited bonds, and creates a po-

tential error in the series at that order. For example,
(h„h~,h, ) = (19,21,24) with (n„n~,n, ) = (3, —5, 2) gives

a minimal loop of length 10. This system will correctly
give the series to the same order as a 10 lattice.

Given parameters (h„h~,h, ), it is straightforward to
enumerate the minimal closed paths. The contribution to
the coefficients e; from a particular path is independent
of any permutations or sign changes in the numbers

(n„n~,n, ). This allows us to combine results from vari-

ous size lattices to cancel the contributions from particu-
lar closed loops. For example, consider loops of length 9.
The (16,18,21) lattice has a minimal such loop with steps
n =(3,2, —4), the (16,17,21) lattice has closed loops with

steps (1,4,—4) and (5,—I,—3), the (13,18,20) lattice has
closed loops with (2,3,—4) and (4,—4, 1), and finally the
(14,17,19) system has the loops (3,2,—4) and (5,—3,—I).
If we combine the coefficients e; as obtained from these
lattices with weights (2, 1,—I,—I), respectively, then all

errors from the loops of length 9 cancel out.
This procedure extends to cancel further loops. In ad-

dition to these simple closed loops, there are double loops
which involve a set of Aipped spins wrapping around the
lattice simultaneously in two directions. We rejected dou-
ble loops of energy less than or equal to the order to
which we were working.

We assembled a list of 20 lattices with relative weights
to cancel all loops of length less than 13. These systems
involved values of It, through 22. A closed loop of 13
Hipped spins has S2 excited bonds. This is the limit of the
order of the series presented here.

We must store counts for all energies up to the max-
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imum order desired, as well as for all possible values of
the top h, spins of our helical lattice. Thus, the primary
computational problem is storage. To reduce these
demands, we performed the calculations modulo small in-

tegers so that at intermediate stages the counts could be
stored in one byte each. This gives the final coefficients
modulo the given integers. The entire program is then re-

peated multiple times using difkrent values for the modu-
los. The Chinese remainder theorem states that if you
know a number modulo a set of mutually prime numbers,
then it is uniquely determined up to the product of these
numbers. We made sufficient passes to make this product
larger than the desired coefficients, and then extracted
them with a short search procedure.

From our results we constructed the series for the ratio
(u t)/Bu)E (6)(.a/au) 'Z

As the first three e; vanish, this ratio is determined

through order u . At the critical point rF. should have a
zero. The slope at this zero equals 2/a, where a is the

specific heat exponent.
A ratio test shows that the first singularity for the

series is unphysical and occurs near u = ——, . We there-2

fore made a conformal transform to new variables defined

by z =3u /(1+3u ) to map the interval u =[—3,0] to

z = [ —~,0] and the physical interval u = [0,~] to

z =[0,1]. We then did a Pade analysis in the variable z.
The results of these are shown in Fig. 1 where we plot a
few stable Pade series for rE in the vicinity of the expect-
ed singularity in P. Our estimate for the critical point is

P, =0.22132(7) and for the exponent is a=0.207(4).
The error quoted is just from averaging over the five Pade
series in Fig. 1, and is rather dependent on details of the

analysis. Although the location of the critical point is in

TABLE II. Coefficients c~ for the expansion of the magnetization. Here —,
' (I cr)—

Jcju,'X', where u e s and X e 2sH. Unlisted coefficients for i ~ 42 all vanish.
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6
8

10
12
14
16
18
20

j=1
1

0
0
0
0
0
0
0

2
0
0
6
~7
0
0
0
0

3
0
0
0
0
45
—108
64
0

4
0
0
0
0
0
12
332
—1314

5

0
0
0
0
0
0
0
240

22
24
26
28
30
32
34
36
38
40
42

j~4
1620
—651
0
0
0
0
0
0
0
0
0

5

2130
—14020
27 660
—23 040
7031
0
0
0
0
0
0

6
108
2976
9450
—132867
387 444
—508428
320 220
—78 904
0
0
0

7
0
56
2646
27216
—9520
—

1 101 660
4722 564
—8833 328
8680245
—4397652
909434

8

0
8
0
2448
36976
179172
—848904
—7 580660
51 142152
—130897 242
180175480

l

28
30
32
34
36
38
40
42

i=9
216
1143
49 896
360450
547 236
—12 320 586
—35 804 700
492 777 576

10
0
240
3960
41 310
672 670
2 368 080
—6 147840
—124 127 630

11
0
0
264
7260
73 216
773 025
6632 208
4660084

12
0
0
36
0
12960
138744
1 220220
9 776 508

13
0
0
0
0
1248
9516
311688
2 129 660

36
38
40
42

j=14
0
1596
32 760
379400

15
0
0
2520
62 700

16
0
0
240
1920

17
0
0
0
408

18
0
0
0
54
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FIG. 2. The same as Fig. 1, but now for the ratio r in Eq.
(8).

excellent agreement with Monte Carlo estimates [1], we

found that it was somewhat sensitive to the order of the
series. On the other hand, a is about twice the expected
value. The small value for this quantity makes its accu-
rate determination difficult.

Extending these results to include the magnetic term in

Eq. (1), we augmented the counting to keep track of the
number of flipped spins as well as excited bonds. This in-

creases memory demands, so we reduced the highest en-

ergy to 42 excited bonds, and worked on a combination of
smaller lattices with h, up to 17 to cancel closed loops of
length through 10. Assuming a spin-up background, we

write

—,
' (1 —a) =pc~)u')',

of spins in more dimensions tends to have a larger num-

ber of excited bonds. In preliminary studies of the four-
dimensional model we used a combination of 4 lattices
with transverse volume up to 21, from which we extract
the series for the energy through 44 excited bonds. These
coe%cients are also given in Table I.

These methods should easily generalize to other dis-

crete systems. The helical lattices used, as well as the
combinations to cancel out finite-size errors, are indepen-
dent of the Ising nature of the spins. It is straightforward
to introduce additional couplings, although this will in-

crease memory needs. Some interesting possibilities for
further exploration are gauge, Potts, and coupled gauge-
spin models in various dimensions. Changing boundary
conditions should enable the study of interface properties.
A direct application of these counting methods to the
high-temperature or strong-coupling limit may also be
quite useful. In Ref. [8] similar recursive methods were

suggested as a means to study many fermion systems. A

particularly challenging problem is the extension of these
ideas to theories with continuous spins.

We thank Joseph Straley for discussions on turning
finite lattice partition functions into low-temperature
series. We also thank David Atwood for discussions on
the Chinese remainder theorem as a memory-saving trick.
The work of G.B. was partly supported by U.S. DOE
Grant No, DE-F602-90ER40542, the research of M.C.
was supported by U S. DOE Grant No. DE AC02-
76CH00016, and the research of J.L. was partly support-
ed by the Swiss National Scientific Fund. Some of the
computations were done on the Cray- YMP at the Super-
computing Computations Research Institute at Florida
State University, and others used the Connection Ma-
chine CM-2 at Thinking Machines Corporation in Cam-
bridge, Massachusetts.

where A=exp( —2pH). The coefficients c;J through 42
excited bonds are given in Table II.

Summing the numbers in Table II over rows gives the
expansion in u for the magnetization at zero applied
field. In Fig. 2 we show several Pade approximants for
the ratio

(cr)

u |)(cr&/t)u
(8)

in the vicinity of the critical point. Before making these
approximants, we made the same change of variables
as used for Fig. 1. These give an estimate for P,
=0.22192(2) and the exponent P =0.308(5), where P is
defined by (a) cc (P —P, )~ in the critical region. These
numbers are also in good agreement with the accepted
values.

The set of parameters defining the helical lattice in-
creases in higher dimensions, giving more lattices for
combination tricks. Also, a cluster with a given number
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