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Physical Basis of the Mollwo-Ivey Relation between Lattice Constant
and Optical Absorption of Defects in Ionic Crystals
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We derive the Mollwo-Ivey power-law relation between optical absorption energy and lattice constant
for defects in ionic solids from the spatial scaling of the defect s electronic charge distribution. Our
starting point is the Vinti sum rule, which relates the rms size of the electronic ground state to the ab-
sorption spectrum. We treat F centers and impurity ions in alkali halides in detail, but the general
theory should be widely applicable.

PACS numbers: 78.50.Ec, 32.70.Cs

The principal optical absorption energy Ed of many
defects in ionic solids exhibits a remarkable power-law
dependence on lattice parameter. Mollwo [1] first ob-
served this in 1931 for the F center, an electron trapped
at an anion vacancy in alkali halides. From limited data,
he inferred an inverse-square dependence. Subsequently,
Ivey [2] found that many classes of defects obeyed the
generalization

Ed =Ca

where a is the nearest-neighbor separation.
For F centers a fit to data for all Nacl-structure alkali

halides yields [3] C =17.3+ 2.8 eV and n 1.81+ 0.10.
Similar rules hold for many other defects, including F-
aggregate centers [2], substitutional anions [4,51, and

possibly defects in oxides [6]. However, the Ivey ex-
ponent is often far from Mollwo's value of 2, ranging
from less than 0.6 for Au in rubidium halides [4] to 3.6
for defects in the alkaline-earth ffuorides [7].

Theoretical understanding of the Mollwo-Ivey relation
has remained incomplete, especially with regard to the
exponent. Frohlich [8] gave the first theoretical treat-
ment for F centers shortly after Mollwo's paper. He as-
sumed an embedded alkali-atom model and viewed the F
band as the transition of the atom's outer electron from
one conduction band to another. Since nearly-free-
electron band-structure energies scale quadratically with

Brillouin zone dimensions (which are proportional to
a '), the resulting F-band energy had strict inverse-

square dependence on lattice constant. (This atomic
model is distinct from another early F-center model
which involved Landau's [9] idea of an electron "self-
trapped" by its polarization of the lattice. ) Arguing that
the F center is highly localized, de Boer and de Groot
[10] showed the Frohlich treatment was inapplicable.
Stockmann [11] then treated the F-center electron as
confined to a rigid box with dimensions of the lattice con-
stant and reproduced the Mollwo relation in this highly
localized model. Although Stockmann's result is widely
quoted [12], the ground and excited states have very
different spatial extent [13] so the notion of rigid con-
finement is an oversimplification.

More realistic F-center calculations [12], based on

Here m, is the free-electron mass. The nth moment of
the absorption spectrum is

Pn=
0

ta "K(to)dra, (3)

where K(ta) is the absorption coefficient.
The Vinti sum rule holds generally for dipole transi-

tions in nonrelativistic systems with velocity-independent
interactions [18]. It is used extensively in atomic physics
[20], but for application to defects, it is common [21] to
separate the defect absorption from that of the host crys-
tal. This leads to approximate defect sum rules modified
for interactions with the host. These modifications in-

clude [21] replacement of m, by m*, an effective electron
mass, and introduction of a frequency-dependent local
radiation field. The e6'ective-field correction appears
in both moment integrals in Eq. (2), but with different

semicontinuum, point-ion, LCAO, and pseudopotential
models of the F center, all predict a Mollwo-Ivey relation
with exponent somewhat less than 2 in the alkali halides.
In addition, pseudopotential calculations explain small,
ion-dependent deviations from the Mollwo-Ivey law as a
result of the finite size of ions neighboring the defect [141.
Wood [15] showed that, at least for the F center, the
transition energy can be expressed as a power series in

the lattice constant with the principal term varying as
a . His argument was based on observations of
Gourary and Adrian [16], and of Wood and co-workers
[17] that the ionic crystal field largely determines the ex-
tent of the trapped electron's wave function, which scales
directly with a. The kinetic energy then scales as a
while the Madelung energy and other potential energy
terms scale as a '. When combined, these yield a net

energy dependence only slightly less rapid than a
However, the wide applicability of the Mollwo-Ivey

law and the large range of n require a more general ex-
planation. To explore this, we have used the Vinti sum
rule [18,19], which relates the mean square radius of the
ground state of a quantum system, (0(r (0), to moments
of its optical absorption,
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The result of applying Eq. (4) to alkali-halide F-center
spectra is shown in Fig. 1. Line a is based on measure-
ments of the F, K, and L bands in potassium and rubidi-

um ha]ides by Liity [23]. Line b was derived from
Dawson and Pooley's [3] measurements of the F band
alone. In both instances, the free-electron mass was used

[24]. Comparison of the two data sets shows that the
weak K and L absorptions contribute less than 5% to
(Oir i0)'i . We will neglect these weak bands in the fol-

lowing.
The striking feature of this analysis is the linear rela-

tion between (Oir i0)'i and nearest-neighbor distance.
The scatter of data points about the linear regression is
small and likel arises from ion-size effects [14]. More-
over, (Oir i0) ' is less than the nearest-neighbor distance

by 0.4 to 1 A, indicating [25] that the bulk of the F-
center ground-state charge is contained within the anion

vacancy. (This observation justifies the above use of the

F Center

weightings. However, the fields are nearly constant over

the absorption spectrum of the defects considered, so ef-
fective-field effects tend to cancel. The effective-mass
correction is important for shallow-donor-like impurities
with diffuse electronic states [22]. For highly localized

ground states, the free-electron mass is more appropriate.
The spectra of many defects consist of one or two

prominent absorption bands followed by a few weak ab-
sorptions at higher energies. While broad, the bands are
often sufficiently symmetric to be approximated by b

functions of oscillator strength f; and energy E;. Then
the Vinti sum rule becomes

(Oir i0)'i =ga+ti. (5)

This generalizes the pure linear scaling with g=o as-
sumed by Gourary and Adrian [16],and Wood [15].

The analysis further suggests an extension to other de-

fects: Physically, it is reasonable to assume that the spa-
tial extent of a defect wave function is a continuous func-
tion of lattice constant for localized defects in ionic sys-

tems in which ion-size and ion-dependent polarization
[26] effects are small relative to crystal-field effects.
Over the small range of lattice constants found in nature,
a Taylor expansion of this function may be expected to be
dominated by the term linear in a. The Mollwo-Ivey re-
lation then follows via the Vinti sum rule, Eq. (4), which

can be written for a single dominant defect absorption at
energy Ep as

3h2
(6)

2m (Oir i0)

The right-hand side of Eq. (6) may be treated by
rewriting Eq. (5) in terms of an arbitrary lattice parame-
ter ao near the center of the range of a,

Eg=

(Oir )0&' rp+&(a —ao),

where rp is the rms radius, gap+ri, of a defect with a
ao. On substituting Eq. (7) into Eq. (6), one finds that

the denominator on the right-hand side of Eq. (6) con-
sists of a polynomial which may be identified with the
first few terms of an expansion of a" about ap. Now, Eg
on the left-hand side may be written in the Mollwo-Ivey
form, C/a", and a" expanded in powers of (a —ao)/
ap, provided (a —ap)/ap(1. [In the alkali halides i(a
—ap)/api ~ 0.3.] Equating coefficients of the zeroth and
first powers of (a —ap)/ap in the two expansions yields

3h2 no

2m r$

free-electron mass. ) We therefore conclude that to an
excellent approximation, the rms size of the F-center
ground state scales linearly with host crystal nearest-
neighbor separation,

CO
CV

C3
V rn

e

and

ap ao d(O'er i0&'n=2( 2
rp rp da

Thus, the Mollwo-Ivey exponent is twice the slope of
(Oir i0&' /rp vs a/ao. In terms of g, ri, and ap,

1

1.5 2 2.5 3 3.5 4

Inter —ionic Distance a (A)
FIG. 1. The rms radius of the F center vs nearest-neighbor

separation in the NaC1-structure alkali halides as determined
from optical spectra (see Refs. [3], [23], and [31])via the Vinti
sum rule. Curve a: F, K, and L bands included; curve b: F
band alone; curve c: F band alone, but assuming the cyclotron
effective mass (Ref. [24]).

2
1+ri/gap

(9b)

(Note that the coefficients of terms quadratic in [(a
—ap)/ap] in the two expansions are identical for n =2
and do not differ significantly for 0.5 & n (4, the experi-
mental range of the Ivey exponent. )

In Fig. 2 we compare the observed F-band energy with

two fittings based on values of ( and tl determined from a
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---. F band Band Host crystal PlE i) (A) ao (A) n,

Alkali halides
NaCl structure 1.77 ' 0.64 0.27 2.84 1.74
CsC1 structure 2.50 0.74 —0.32 3.76 2.26

TABLE I. Mollwo-Ivey exponents and linear-fitting parame-
ters, g and i), for common ionic-crystal defects. The exponent
nq was derived from power-law fits to the absorption-band ener-

gy vs nearest-neighbor separation; n, was calculated via Eq. (9)
from g, it, and ao, the average nearest-neighbor separation in

the host crystals for which the defect spectra were measured.
The parameters g and ri are defined by Eq. (5). They were
found by least-squares fits to (Oir~i01'n, which, in turn, was
determined from measured optical spectra via the Vinti sum
rule; the data used were taken from the sources shown for ng.

Inter —Ionic Distance a (A)

FIG. 2. A comparison of the experimental F, U(H ), and

C(Ag ) band energies with best-fit Mollwo-Ivey relations
(solid lines) and the Vinti sum-rule predictions assuming a
linear relation between rms radius and nearest-neighbor separa-
tion (dashed curve). Values of g and g were taken from least-
squares linear fits to (Oir 2~01'~ and are listed in Table I.

Vinti moment analysis of the absorption spectra (see
Table I). The solid curve is a traditional Mollwo-Ivey
power-law approximation, but with C and n calculated
via Eqs. (8) and (9). The dashed curve is the single-
absorption Vinti expression Eq. (6), with (O~r )0) evalu-
ated using Eq. (5). Over the crystallographic range of a,
the two calculated values are indistinguishable to within

the scatter of F-center energies attributable to ion-size
effects.

Our result for the Ivey exponent [Eq. 9(b)] also ex-
plains the success of very different F-center theories in

correctly predicting the observed power-law behavior:

Any theory, right or wrong, which gives defect wave

functions scaling principally as ga (i.e., for r)/(an«1)
predicts n=2 Thus, St.ockmann's particle-in-a-box mod-

el and Frolich's free-electron model both predict n=2,
since the crystal potentials for both models scale with the
lattice constant. In more realistic F-center models, the
principal part of the defect potential remains the
Madelung energy, which scales with a '. Minor
modifications such as cutoffs, polarization corrections,
ion-size effects, etc. , destroy this exact scaling with a, but
do not alter its dominance.

Figure 3 extends these ideas to other Mollwo-Ivey
centers. With the possible exception of the oxides, the
rms radii of the electronic ground states all scale linearly
with a. The expansion parameters ( and r) for a number
of defects are listed in Table I together with the Ivey ex-
ponent nz found directly from a Mollwo-Ivey plot of 1nEd
vs lna, and the exponent n„calculated indirectly from fits

of a linear regression to (O~r ~0)'~ via Eq. (9). The
agreement is good. In Fig. 2 we also compare observed
energies of U and C(Ag ) bands with the transition en-

ergies as calculated from ( and ri. As with the F center,

F+
F+
Ff+?)

Sulfides
Oxides
Fluorides

Alkaline earth
2.59 ' 0.97 —0.66 3.01 2.58
3.13 1.25 —1.16 2.46 3.21
3.60-3.85 ' 1.72 —2. 15 2.52 3.97

Alkali halides
U(H ) NaCl structure 1.10' 0.28 0.52 2.84 1.21
U(H ) CsC1 structure 1.54s 0.33 0.28 3.76 1.63

Alkali halides —NaCl structure
(OH ) Na halides 0.85" 0.35 1.26 2.70 0.86
(OH ) K halides 1.03" 0.39 1.34 3.32 0.98

c(Ag -)
c(Ag -)
C(Ag )
C(Au )
C(Au )
C(Cu )

Alkali halides —NaC1 structure
Na halides 1.03 ' 0 28 0 81
K halides 0.75 ' 0.19 1.03
Rb halides 0.64 ' 0.13 1.24
K halides 0.63 ' 0.13 1.05
Rb halides 0.57 ' 0.13 1.07
K halides 0.65 ' 0.15 1.20

3.01 1.02
3.32 0.76
3.45 0.53
3.32 0.58
3.45 0.59
3.32 0.59

Alkali halide —CsCI structure
C(Ag ) Cs halides 0.97' 0.21 0.92 3.76 0.92

'Reference [3], updated with new Lil F-band data from Ref.
[31].
bReference [28].
'Reference [29].
dReference [30].
'Reference [7].
'References [2] and [32].
sReference [27].
"Reference [5].
'Reference [4], average values, Table 8.

the energies predicted assuming a generalized linear spa-
tial scaling of the wave function are indistinguishable
from the Mollwo-Ivey fits over the natural range of crys-
tal lattice constants.

A fuller discussion of the parameters ( and ri will be
given in a subsequent publication. Here we simply ob-
serve that the linear term ga should dominate the rms ra-
dii of defects such as F and F-aggregate centers, which

involve vacancies and, consequently, have potential wells

dominated by the crystal fields. Moreover, if the defect
electron(s) are trapped primarily within the vacancy, (
should be roughly unity. (For highly localized defects
such as F+ centers, g may be negative to onset the rela-
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FIG. 3. The rms radii of various defects in ionic solids as

determined from optical spectra via the Vinti sum rule assum-
ing the free-electron mass. The data were taken from the
sources referenced in Table I.
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