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Static Response from Quantum Monte Carlo Calculations
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We have evaluated the density-density static response of a many-body system by calculating with
the quantum Monte Carlo method the energy and density change caused by an external potential.
Our results for the linear response function of liquid He at zero pressure and temperature are in
excellent agreement with the available experimental data. The results for the response function of
2D electrons also at zero temperature, obtained within the fixed-node approximation, constitute the
most accurate information available to date for this system.

PACS numbers: 05.30.—d, 02.50.+s

n~ = g(q)vg + Csv~ + (2)

only contains odd powers of v~. Here y(q) denotes the
static density-density linear response function in Fourier

The quantum Monte Carlo method (QMC) provides a
systematic route to the calculation of exact properties of
many-body systems [1]. For bosons, in particular, sta-
ble algorithms exist that yield virtually exact results [2,
3]. This is not the case with fermions, which suffer from
the so-called sign problem. However, very accurate re-
sults have been obtained for a number of systems, rang-
ing from the homogeneous electron fluid [4, 5], to light
molecules [6], and to solid hydrogen [7], using the fixed-
node approximation. The vast majority of calculations to
date have been for equilibrium properties such as energy,
one-particle-orbital occupation numbers, and static cor-
relation functions. Calculations of time-dependent corre-
lation functions and of the related response functions [8]
have been lacking for continuum systems. With the ex-
ception of some recent progress [9] for lattice models, the
same lack of results holds for the static response functions
which are properties of the many-body system that, apart
from their intrinsic interest, are of importance to density
functional developments beyond LDA [10] and crucial to
the recently developed theory of quantum freezing [11].

We show that the static density-density response func-
tion is directly calculable by QMC with little increase in
technical complexity as compared with other properties.
We directly use the definition of static response function,
rather than evaluate it in terms of the time-dependent
correlations, via the fluctuation-dissipation theorem [8].
We apply a static external potential,

v,„,(r) = 2V~ cos(q r),

which induces a modulation of the density with respect
to its mean value, no. Such a modulation contains pe-
riodic components at all wave vectors that are nonvan-
ishing integer multiples of q. In particular, one Bnds a
modulation with wave vector q, ni(r) = 2n~cos(q r),
where

space. Similarly the ground-state energy (per particle)
can be expanded in even powers of v~:

E„=Ep+ vq+ C4v +x(q) z 4

AO

exp[ —u(r, ,)], (4)
i&j

and a McMillan pseudopotential u(r) = ar 5, with a a

The coefficients Cs and C4 in the above equations are
determined by the cubic response function [12]. QMC
allows the direct evaluation of both n~ and E„, for given

q and v~. We perform simulations at a few coupling
strengths vq and then extract y(q) as well as the higher-
order response functions from the calculated n~ or E„,by
fitting in powers of vz. As an illustration, we have cho-
sen to study superfluid 4He and the two-dimensional (2D)
electron fluid in a uniform background, both at zero tem-
perature. These systems are prototype quantum Bose
and Fermi fluids.

For a given potential, QMC provides a means to nu-

merically sample the ground-state wave function 4p of
the many-body system. In practice, this is achieved by
means of random walk algorithms, which propagate the
wave function from a suitable starting guess 4 T to the ex-
act (for bosons) ground-state function. In the diffusion
Monte Carlo method (DMC) [6] one evolves the wave

function in imaginary time to project out higher energy
components of the trial function. To guide the diffusion

process efBciently and to apply fermion antisymmetry for
many-body systems one needs an accurate trial function.
This is optimized by the variational Monte Carlo tech-
nique (VMC) [1] before using it in DMC.

To study superfluid 4He we have chosen the Aziz two-

body model potential [13], which gives results for both
thermodynamic and structural properties in very good
agreement with the available experimental evidence [14].
As a check of our DMC algorithm we have performed
preliminary calculations without an external potential,
verifying the equivalence of our results with those of pre-
vious calculations [14] with a Jastrow trial wave function,

~T(R) =
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variational parameter. For the system in external field

we used the trial function

@T(R) = iIJT (R) exp[icos(q r, )],

with o, a new variational parameter, related to the ex-

ternal potential strength v~, and @oT given by Eq. (4).
One can easily show that iiJT(R), to leading order in

o;, correctly yields n(r) = no + 2o;icos(q r), with p a
function of the density no To. determine the relation-

ship between the amplitude of the external potential vq,
and the variational wave-function parameter n, we have

found it convenient to fix the wave-function parameter
o, and determine the corresponding potential v~ which

satisfies the minimum condition BE„/Be = 0. Once the
trial function @T has been optimized, we perform diffu-

sion runs to sample the exact ground-state wave function

Co, and then we evaluate the total energy and the Fourier
component n~ of the density. One should keep in mind
that while the estimate of the energy is exact, within sta-
tistical errors, the extrapolated estimate [1] yielding n~ is

approximate. In fact its accuracy depends quadratically
on the difFerence 6'4 = illa —@T. Therefore we shall

generally evaluate y(q) from the energy, using Eq. (3).
We have studied in detail superfluid He at zero tem-

perature and at a number density np = 0.02186 A.

which experimentally corresponds to zero pressure. Fig-
ure 1 shows a typical result of the total energy E„versus
the strength vz of the modulating potential for a wave

vector q = 1.91 A. . The fit to the polynomial in vq of
Eq. {3) reproduces the calculated energies perfectly, the
error bars being not discernible on this scale, and yields

y(q)/no ———0.215(8) K i. From similar fits at difFerent

periodicities, with vq's such that generally nq/no 0.1,
we obtain other values of y{q) which are collected in Fig.
2. In the same figure we also show the available exper-
imental data [15] and the Feynman approximation [16],
which relates the static response to the static structure

4~0 = DtD&CT, (6)

with the pseudopotential entering 4'& of a suitable form

[5]. Although the nodal structure of CaT is thought to be
accurate enough for the unperturbed system [5] we have

factor S(q), yF(q) = —S (q)/(h q /4Mno). Here, M is

the mass of the 4He atom. Our choice of density was es-

pecially motivated by the existence of experimental data,
which —to our knowledge are the only ones available for

the static response of a fully degenerate simple quantum
liquid. Clearly, our results are in excellent agreement
with experiment. It is evident that at this low density
the Feynman approximation severely underestimates the
true response, for which [16] it is a lower bound. The
results of Figs. 1 and 2 were on a system of 64 atoms.
These results were checked in a few cases by comparing
with those of 125 atoms.

The 2D electron system is of importance in practical
situations [17], and receives continuing attention due to
its peculiar behavior in the presence of a magnetic field

[18]. A fundamental model in many-body theory, to us

this system has the great advantage of being less demand-

ing computationally than its three-dimensional counter-

part. This is of some importance in the present case,
considering that fermions are anyway slower to simulate
than bosons. Thus, we have studied unpolarized elec-
trons at T = 0, interacting with the potential I/r, at
a few densities of practical interest [17, 18]. We use the
standard units of length where no = 1/7rr, a~&, and r,
the radius of the Wigner disk in units of the Bohr radius

ag —gives a measure of the coupling strength. We have

performed our DMC simulations within the fixed-node

approximation, which is known to be both quite accurate
and variational in character [6]. To simulate the unper-
turbed system we take a standard trial function [1) 4oT

which is the product of two plane-wave Slater determi-
nants D, (one for each spin projection s) times a Jastrow
function ~IIT of the form given in Eq. (4). Explicitly,
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FIG. 1. The energy of liquid He at T = 0 and no ——

0.02186 A vs the strength v„of the applied potential mea-

sured with respect to that of the uniform Auid, AE = E,—Eo.
The circles are the calculated MC energies and the curve gives
a fit in powers of v~ (see text).
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FIG. 2. Linear static response function X(q) of liquid He
at the state specified in Fig. 1. The circles give the present
MC results, while the full curve reports experimental data
I15]. Error bars are reported on each MC point and few typi-
cal error bars are shown also for the experimental data. The
dashed curve gives the Feynman approximation (see text).
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no experience on its accuracy after the perturbation has
been applied. Therefore, we have considered two alterna-
tive trial functions for the perturbed system. The wave
function denoted by 4» &

is obtained by multiplying C»
by a simple modulating factor in exactly the same way
as @vT is obtained from 4~+ [cf. Eqs. (4) and (5)]. This
means that 4z, i and C PT, i have identical nodes which one
knows is incorrect for noninteracting particles. A second
trial function is instead obtained retaining the form of
Eq. (6), i.e. ,

CT q
——Dt D)4») (7)

and constructing the determinants D," in terms of one-
particle orbitals (Mathieu functions) for noninteracting
electrons in a new external field, v'(r) = o. cos(q r),
with n a variational parameter. In general, CIT &

will pos-

sess a different nodal structure than CTP and 4T i, while

still yielding a modulated density. We have compared
the VMC and DMC energies obtained starting with ei-

ther C» i or C»2, and systematically found the energy
of 4& z lower. Hence we have performed all subsequent
calculations with trial wave functions of the form given in

Eq. (7). Note that the eff'ective potential should be weak

enough that the filling of the single particle orbitals is
not altered. Similar to the boson case, we evaluate y(q)
from a fit of our calculated total energies, according to
Eq. (3), since this route is more accurate than looking
at the density response from Eq. (2).

Our fixed-node static response y(q) for the 2D elec-

tron gas is shown in Figs. 3 and 4, at two values of the
coupling strength, i.e. , r, = 1 and r, = 5. These results
were obtained from simulations with 26, 58, and 90 elec-
trons. We correct the static response functions for the
finite systems by assuming that the interacting and the
noninteracting response functions have the same scaling
with the electron number ¹ This procedure correctly
makes the results with diferent X closer to each other,

and closer to the known exact behavior at small q. In the
same figures we also report, for comparison, the response
function of noninteracting electrons yp(q) [17] and the
mean-field RPA approximation, which is simply given by

QRpA(q) = gp(q)/[I —(2ne /q)gp(q)]. Already at r, = 1

the difFerences between the RPA and the fixed-node re-

sponse are appreciable. Clearly they increase with the
coupling, as is seen from Fig. 4. We also report in the
figures a number of approximate schemes [19—22]. While
interpolating between yp and yR pA, they all show quanti-
tative difFerences with respect to our results in the impor-
tant region around 2qF, qF = (2irnp) ~ being the Fermi
wave vector. Similar calculations on the spin response
function are in progress.

It will not have escaped the reader that our method
of evaluating the static response functions is computa-
tionally demanding. In fact to obtain y(q), at a given
thermodynamic state, requires a few simulations for each
wave vector q

—thus involving of the order of tens of simu-
lations to construct g(q) over the range of relevant wave
vectors. Though the use of the ffuctuation-dissipation
theorem could in principle require less computer time,
since the entire response function would be calculated
at once, estimation of the systematic errors for the con-
vergence of the time integral is problematical and the
formula is not appropriate with fixed-node DMC. In fact
the direct method used here has the advantage of giv-

ing insight into the structure of both the perturbed wave

function and the higher-order response functions. The
calculations were performed on a network of IBM RS-
6000 workstations.

In summary, we have presented calculations of the
static linear response in quantum liquids, based on dif-

fusion Monte Carlo simulations. Our results for bosons,
which are exac. within the statistical uncertainty and
the assumption of the Aziz pair interaction [13], are in

perfect agreement with the available experimental data,
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FIG. 3. Linear static response function y(q) of the 2D
electron fiuid at r, = 1. The empty and full circles give fixed-
node MC results obtained from simulations with 58 and 90
particles, respectively. Dotted and dashed curves show the
response of noninteracting particles and the RPA approxima-
tion (see text), while the full curve gives an approximation
due to Sato and Ichimaru [19].
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FIG. 4. Linear static response function g(q) of the 2D
electron fluid at r, = 5. The squares, empty circles, and full
circles give fixed-node MC results obtained from simulations
with 26, 58, and 90 particles, respectively. Dotted and dashed
curves show the response of noninteracting particles and the
RPA approximation (see text). The full curves labeled a, 6, c
give other approximations [20—22].
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thus giving further confidence in the interparticle po-
tential. In the absence of experimental results for the
static response of 2D electrons, our results for this sys-
tem, obtained within the accurate fixed-node approxima-
tion, provide the best information available to date. In
both cases we are confident that our results will stimulate
developments in the area of density functional formalism

[10] and, more in general, in that of many-body theory.
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