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Comment on "Classical and Quantum Superdift'usion
in a Time-Dependent Random Potential"

Golubovic, Feng, and Zeng [1] treat the problem of
particle diffusion in random potentials with Gaussian
space-time correlations, i.e., [V(x, t) V(x', t')] =exp[ —(x—x') /i —(t —t') /r ]. It is our claim that Eq. (8) of
their paper (and subsequent results) is incorrect since it
violates Liouville's theorem: The phase-space distribution
must obey dP/dt =0, i.e., BP/Bt =0 for BP/Bx;, BP/Bv;

=0, since this is true for each realization. (Here x;, v;

are Cartesian position and velocity coordinates. )
To derive the proper governing equation we begin with

the usual Fokker-Planck equation [2] derived from the
continuity of P:
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Liouville's theorem implies that (Av;) =
2 B(ht;hvj)/Bvi.
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with the square brackets indicating an ensemble average
over the random potential and x'=x"+v(t' —t"). For a
specific potential such as the Gaussian random potential
of Golubovic, Feng, and Zeng [1] it is easy to carry out
the ensemble averages to evaluate M;j. Thus we express
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after which the t' —t", rp, and k integrals in M;~ are easily
performed to yield, instead of the paper's Eq. (8), the
correct Fokker-Planck equation,
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with the velocity diffusion tensor
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as correctly given by Eq. (6) of the paper [I]. Here
vp =i/r with the diffusion coefficient decreasing for
v & vp as the particle moves rapidly through the correla-
tion length of the potential.

To solve the problem of diffusion from a point source at
x=0 it is useful to take spatial moments of Eq. (1).
Define Pp=fPd x, Qq =fPxkd x= (vt, /v)P~, where—Pp
and P~ are isotropic functions of v. Integrating Eq. (1)
over all space gives, with d the number of dimensions,
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The rate of change of (x ) is given by the x moment of
Eq. (1).

For early times when (v ) « vp we approximate
(1+v /vp) 't =1 and recover the usual results (v )-t,
(x )-t for any dimension d.

For late times when we approximate (1+v /vp)'
=v/vp it is clear from Eq. (2) that Pp is of the form

t fp(v /t) so that (v )-t t for all dimensions d.
Now, because the angular diffusion term [the second

on the right-hand side of Eq. (3)] is large compared to
the energy diffusion at large v, by a factor t -t, the
particle changes direction more frequently than the veloc-
ity buildup, leading to smaller diffusion for d & l. Hence
for d =1, P] t' Pp and for d ) 1, P~ t' Pp. Thus,
(x )-t ' t (d =1) and (x )-t (d & 1). So we find
different scalings for (v ) and (x ) in the case d & 1 from
those given in the paper [1]. Finally, since quantum
spreading (x ) t, it is o-bvious that quantum effects (for
continuous potentials such as considered here) are only
relevant at very early times and need not be considered.
These comments do not alter the basic conclusions of the
paper.
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while for the first "spherical" harmonic, which measures
the correlation of the velocity direction with the direction
from the origin of the motion, we have from multiplying
Eq. (1) by xt, and integrating over all space

[1] L. Golnbovic, S. Feng, and F.-A. Zeng, Phys. Rev. Lett.
67, 2115 (1991).

[21 See, for example, S. Chandrasekhar, Rev. Mod. Phys. 15,
1 (1943), or any standard text.

1992 The American Physical Society 1831


