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Dynamics of Sine-Gordon Solitons in the Annular Josephson Junction
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The annular Josephson junction allows for the study of undisturbed soliton (lluxon) motion in the ab-
sence of collisions. With new experimental methods and design we have realized for the first time a fully
controllable way of introducing individual fluxons or antifluxons into such a system. This has allowed us

to study multisoliton behavior and to make a comparison with existing soliton-chain perturbation theory.
An unforeseen crossover in the dynamical behavior at high velocities is tentatively interpreted in terms of
soliton bunching.

PACS numbers: 74.50.+r, 03.40.Kf, 74.60.Ge

Solitons, particularly sine-Gordon solitons, play an im-

portant role in physics as examples of nonlinear wave

motion [1,2]. This paper emphasizes new results for the
ideal experimental system —the annular Josephson junc-
tion [3,4]. With new experimental methods and junction
design we have realized for the first time a fully control-
lable way of introducing individual fluxons or antifluxons
into such a system. This has allowed us to study multisol-

iton behavior and to make a comparison with existing
soliton-chain perturbation theory.

The system discussed here is described by the per-
turbed sine-Gordon equation [1-3],

v» «t =»—n&+«t IJ&»t+ —r,
where y(x, t) is the space- and time-dependent supercon-
ducting phase difference. The spatial coordinate x is nor-
malized to the Josephson penetration depth A,J, and the
time t to the inverse plasma frequency tao ', a and P are
the dissipation coefficients, and y is the bias current.

In the case of the conventional topology of a long
Josephson junction, a moving soliton cannot avoid col-
lisions with other solitons and the junction boundaries.
This strongly complicates the analysis and interpretation
of the experimental data. In the annular junction [3,4]
the boundary conditions for Eq. (1) are periodic, so we
may avoid collisions and study in a controllable way the
motion of individual fluxons. New sample design and ex-
perimental methods give the present work a major advan-
tage over previous works [3,4], and lead to new results.

In order to trap solitons we have applied the technique
of low-temperature scanning electron microscopy [5].
%e used Nb-Pb annular Josephson tunnel junctions
which were very close to the classical geometry [3,4] [Fig.
1(a)]. The most important improvement was the use of a
SiO insulating window. The tunnel barrier was formed in
the area between two SiO rings. A spatially resolved in-
vestigation showed high homogeneity of the tunnel bar-
rier [Fig. 1(b)].

Annular junctions of two typical dimensions with an
inner ring radius of 150 and 100 pm and with a tunnel
barrier ring width of 10 and 20 pm, respectively, were
used. The critical current of the junction, I, =3.3 mA,
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FIG. l. (a) An improved annular Josephson-junction ge-
ometry. (b) Spatial distribution of the subgap conductivity ob-
tained by scanning the electron beam across the annular junc-
tion. (c) A sketch of the annular junction with the electron
beam moving across the substrate. (d) The cross section of the
junction in the region shown by the dashed line in (c) at the
moment when the beam focus is in the junction area.

was only about (15-20)% smaller than the ideal ~alue for
a small junction, which implies that the self-field effects
are negligible. The critical current density was about 40
A/cm, which corresponds to A,J = 70 pm.

The sample was attached to the top side of a sapphire
disk using high-thermal-conductivity glue. During the
experiments the bottom side of the sapphire disk was in

direct contact with liquid He, whereas the top side carry-
ing the Josephson junctions was exposed to the vacuum of
the scanning electron microscope. The sample tempera-
ture during the measurements was about 5 K. A heater
could be used to remove trapped magnetic flux from the
sample. The external magnetic field H, was applied in

the direction perpendicular to the substrate plane. The
I-V curves were measured by a model 181 Keithley nano-
voltmeter.
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FIG. 2. (a) I-V curves corresponding to the sequential trap-
ping of solitons in the annular Josephson junction. The num-

bers indicate the number of solitons trapped. (b) The
modification of the first soliton step by irradiation of the area
around the junction with a defocused electron beam.

The focused electron beam was used for trapping mag-
netic flux quanta in the annular junctions. Crossing of
the top electrode by the electron beam focus resulted in

trapping the magnetic flux in the tunnel barrier [Fig.
1(c)l. This was due to the local heating of the sample by
the beam. A normal domain carrying the magnetic flux
was moved across the Pb film together with the electron
beam focus as shown in Fig. 1(d). The trapping pro-
cedure was performed without any bias current passing
through the junction. The details of this technique are
presented elsewhere [4].

Figure 2(a) shows the experimental I-V curves for the
trapping of solitons in the annular Josephson junction ob-
tained by a sequential crossing of the junction with the
electron beam. The resonant soliton steps corresponding
to different numbers n of unipolar solitons are observed.
The I-V curves are symmetrical with respect to the origin.
The voltages of the steps are quantized as expected, ac-
cording to the formula [2] V„=nunc/L, where @a is the
magnetic flux quantum, c is the maximum velocity of the
electromagnetic waves in the junction, and L is the junc-
tion circumference. At the step voltage V„the solitons
move as relativistic particles with velocity close to c.

With properly adjusted electron beam parameters the
magnetic-flux-trapping procedure worked quite reprodu-
cibly. The electron beam focus was placed on the Nb
film outside the junction and moved towards the junction
[Fig. 1(c)]. After crossing the junction area the beam
was stopped in the opening inside the ring and then
blanked. In most cases such a procedure resulted in trap-
ping one soliton in the junction. When the process was
repeated, voltage steps with increasing number n were ob-
served. Reversal of the magnetic field H, during the
trapping sequence resulted in a decrease of the step num-

ber. By heating the whole substrate above the critical
temperature of the superconducting films it was easy to
remove all trapped flux from the junction.

If solitons are trapped in an ideally homogeneous annu-

lar junction, theoretically the nondissipative critical cur-
rent I, should be equal to zero. This is perfectly fulfilled
for all the curves in Fig. 2(a) and represents a good proof
for the high homogeneity of our junctions. Sometimes
during the trapping procedure a certain critical current
[typically (5-10)% of I, l was observed. A redistribution
of the magnetic flux occasionally trapped in the elec-
trodes under the influence of the electron beam probably
took place. Figure 2(b) shows as an example the first
voltage step (A) obtained as described above. This step
displays a critical current of about 50 pA. Curves 8 and

C show the same step after irradiation of the sample area
around the junction by a defocused beam with lower

power. For curve C the critical current has been reduced
to an insignificant level.

It is essential to emphasize the distinct diAerence of the
steps which we have observed from those of a linear long
junction, where the steps may also arise from cavity mode
excitations. This mechanism is known as an alternative
to the soliton-type one. A cavity mode may be excited
only if there is a strong inhomogeneity like an open
boundary of the junction. For the cavity mode excita-
tions the steps are typically very steep and they all ap-
proach the same limiting curve as I 0. In our case, ex-
cept for very large step number n, the slope of the I-V
curves at small I changes with n, which agrees with the
soliton picture. Another characteristic of higher cavity
mode steps in linear junctions is a negative diflerential
resistance, which is often observed at the bottom of the
steps. We did not observe any behavior like this for the
steps reported in this paper. However, sometimes we also
observed this feature in our annular junctions (in the

form of unstable switching from the lower part of a step
to higher voltages) when parasitic magnetic flux was

trapped in the films.

We have found the soliton steps in the I-V curve to be

highly stable. As a result of electromagnetic interference
and external noise during the measurements in the scan-
ning electron microscope, current jumps from the soliton

step to the gap voltage and back were occasionally ob-
served but only at high currents close to the top of the
step. At lower currents we found the soliton steps to be

globally stable dynamical states of the system and jumps
to the gap voltage never occurred. This is in contradic-
tion to conventional long Josephson junctions, where the
soliton steps are rather unstable. The curves in Fig. 2(a)
show only globally stable parts.

Figure 3(a) shows the lower parts of some steps from
Fig. 2(a). With increasing step number the steps asymp-
totically approach the McCumber curve. The multisoli-
ton states for the perturbed sine-Gordon system with

periodic boundary conditions was analyzed by Marcus
and lmry [6]. They obtained the I-V characteristics in

the following form:

=~kK(k) (2)
n k (1 —

~
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FIG. 3. (a) Lower parts of some steps from Fig. 2(a) (solid
lines). The dashed curves represent a fit using Eq (2).. (b)
Theoretical I-V curve (2) with a=0. 1 (A), the same curve
when taking into account the finite width of the ring (8), p
losses with a 0.05 and P=0.05 (C), and taking into account
both the P losses and the finite width of the ring (D).
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FIG. 4. The detailed comparison of the high-current parts of
the scaled soliton steps in a magnified voltage scale (the voltage
of the nth step is divided by n) The a.rrows show approximate-

ly the crossover regions where the steps with n 3 and n=4
start to shift to higher voltages.

where K(k) and E(k) are the complete elliptic integrals
of the first and second kind with modulus k, respectively,
and v is the soliton velocity normalized to c. The dashed
curves in Fig. 3(a) show a two-parameter fit of Eq. (2) to
the experimental I-V curves (solid lines). The tendency
to reach an asymptotic linear slope with increasing num-

ber n of solitons is similar both for theory and experi-
ment. However, in the crossover region between the
linear slope and the relativistic vertical part of the steps
deviations between experiment and theory are evident.
We suggest two reasons that can explain this discrepancy.
First, because of the finite width of the junction the mov-

ing soliton has a difference in velocity at the outer and
the inner radius of the ring. This difference is relatively
large [about (8-20)% for our junctions] and is drastic at
high velocities. The corresponding correction to the I-V
curve can be calculated by averaging the velocity-de-
pendent losses over the width of the soliton [7]. Figure
3(b) shows the shape of the I-V curve modified by taking
into account a finite width of the ring hR/R =0.2 (curve
8). Second, Eq. (2) does not include the surface losses
corresponding to the well known [8] P term in Eq. (I).
Curve C shows the modified shape of the I-V curve ob-
tained by taking into account the P losses. Curve D cor-
responds to the case when both the P losses and the finite
width of the ring are taken into account. Although we
are not attempting a detailed fit, we see that these correc-
tions improve the agreement between theory and experi-
ment.

A new feature predicted in Ref. [6] was the increase of
the step height 1„(evenexceeding I, ) with the step num-
ber n. We note a similar tendency for steps 4, 5, and 6 in

Fig. 2(a). To our knowledge this has never been observed
experimentally before. In conventional long linear
3osephson junctions the step height always decreases with
increasing n. We believe that this difference between

linear and annular junctions is due to the global stability
of the soliton steps in the annular system.

Figure 4 shows the current plotted versus the voltage
per fluxon V„/n and displays the top parts of the steps in

a magnified voltage scale. Since V„/n is proportional to
the average fluxon velocity v, we can compare the depen-
dence of v on the external driving force I-y for different
fluxon densities. With increasing step number a crossover
in the step voltage is clearly seen. At high current I the
no"malized voltage V„/n for the steps with n )4 is con-
siderably lower than for the steps with smaller n In pri.n-

ciple, a certain monotonic decrease of U with increasing n
is expected [61. It can be explained as an increase of the
effective damping parameter aE(k) as k decreases with
increasing n Howev. er, it is evident from Fig. 4 that the
changes of the curves with increasing n cannot be de-
scribed by only a smooth one-parameter scaling. In par-
ticular, at certain fluxon velocities (shown by arrows in

Fig. 4) the steps with n =3 and n =4 display a shift to
higher voltages, which is not expected by theory [6].

We suggest the following explanation of this crossover
at high velocities. As known from computer simulations
[81, the dissipation due to the P losses at high velocity
generates an effective attraction between unipolar solitons
and results in bunching in a localized soliton train moving
in the junction. This bunching effect breaks the symme-

try in the annular system and "helps" the chain of soli-
tons to overcome the dissipative losses. Their average ve-

locity then becomes higher than that of a single soliton at
the same bias current. Malomed [9] has recently shown

that in an annular system the threshold velocity of soliton
bunching increases with increasing soliton number n.
The experimental curve for n =4 displays the voltage in-

crease at a soliton velocity which is higher than that for
n =3, in agreement with the theoretical prediction. This
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explanation is relevant for the case (» I when solitons
are well separated. Thus, it is not surprising that we do
not see any distinct crossover for n & 4, because in those
cases g is of the order of 1 and the single-soliton behavior
cannot be expected.
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