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Neutral Superfluid Modes and "Magnetic" Monopoles in Multilayer Quantum Hall Systems
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We show that, in the absence of interlayer hopping, the v= 1/nt quantum Hall states in double-layer

systems contain a neutral gapless mode with linear dispersion, describing the relative Auctuations of the
electron densities in the two layers. At finite temperature the system experiences a Kosterlitz-Thouless
transition. In the presence of interlayer hopping an energy gap proportional to the square root of the

hopping amplitude will be opened. In field theory this corresponds to a U(1) gauge field acquiring a
mass due to the monopole-antimonopole plasma in the (2+1)-dimensional spacetime.

PACS numbers: 73.20.Dx, 11.15.—q, 14.80.Hv, 73.20.Mf

In the past few years, several groups studied multilayer
quantum Hall (QH) systems and found many interesting
properties [1-3], such as the collapse of the integral
quantum Hall (IQH) states at odd-integer filling frac-
tions and the appearance of the v =

2 FQH state in

double-layer systems. In this paper we are going to study
the v=1 (and more generally, the v=1/m) QH state in

double-layer systems. Two energy scales play very im-

portant roles here. One is the potential energy V between
electrons in different layers. The other is the energy gap
AsAs between the symmetric and the antisymmetric wave
functions in the double wells. hsAs measures the electron
hopping amplitude between the two layers. When hsAs is

large, the double-layer system is equivalent to a single-

layer system because all electrons are in the subband of
the symmetric wave function. Here we are going to study
the opposite limit, i.e., V»hsAs. We will argue that in

the absence of interlayer hopping, the double-layer state
(mmm) at filling fraction I/m supports neutral gapless
excitations with a linear dispersion relation, the Nambu-
Goldstone (NG) mode from a spontaneously broken U(1)
symmetry. If a nonzero interlayer hopping is present, an

energy gap proportional to the square root of the hopping
amplitude will be opened. The above results for a special
case of the (111) QH state have been obtained in Refs.
[4,5]. We also discuss superfiuid properties in the
(mmm) states and some experimental consequences.

Consider the double-layer state 9'(t „) introduced in

Ref. [6]:

where zt and wt are the electron coordinates in the two layers. This state is favored by electrons with short-range repul-
sions. In the following we would like to argue that (I) supports gapless excitations when l =m =n To avo. id complica-
tions from the edge excitations, let us put the system on a sphere. Introducing the spinor coordinates [7] u;, v; for the
electrons in the first layer and u;, v; for the electrons in the second layer, we may write the wave function (1) as

NI N2 NI N2

q (tmn) + (ut v ' vtuj ) Q (utvj vt ltj ) + + (utvj vtuj )
&&J «J I 1J 1

(2)

where Nt and Nz are the numbers of the electrons in the
two layers. The total power of u; and v; and the total
power of u; and t|;, for each fixed i, must be equal to the
number of the flux quanta passing through the sphere,
N&. Therefore N~ and N2 must satisfy

E = d'x-,' tc(n) —nz)', (4)

l(N~ —I)+nNz=N&, m(Nz —I)+nNt =N&.

In general the solution of (3) is unique, representing an
incompressible homogeneous ground state. But when
1=m =n (3) does not have a unique solution. Any Nt
and N2 that satisfy N~+Nz=Nt, + I will satisfy (3).
Those states with different N ~

—N2 represent the gapless
excitations, because moving electrons from one layer to
the other hardly changes the short distance correlations
between the electrons. We expect the total energy of the
states to have the following form in the thermodynamic
limit:

where n
~

and nz are the electron density in the two layers
and I/4tc is the capacitance per unit area between the two

layers. (Here we have assumed that the intralayer in-

teraction is stronger than the interlayer interaction so
that tc is positive. )

The above discussion suggests that, in the absence of
interlayer hopping, a double-layer QH state +& ) at
filling fraction v=1/m support a gapless mode of collec-
tive excitations. The gapless mode is associated with

strong fluctuations of n~
—n2. Notice that in the absence

of interlayer hopping there are two U(1) symmetries, one
associated with the conservation of the total electric
charge N ~+N2, the other with the conservation of
N~ —N2. Therefore the gapless mode is the NG mode
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n m

corresponding to the wave function in (1), and with the
filling fraction v=(1+m —2n)/(lm —n ).

When K has a zero eigenvalue, the corresponding
linear combination of the gauge fields becomes massless,
with dynamics governed by Maxwell terms in (5). For

1 1

K=m
1 1

(giving v= 1/m as we can see by taking a suitable limit),
the combination a+ =a~+az has finite gap and couples to
the electromagnetic potential A„ thus describing a Hall
fluid, while the combination a =a~ —a2 is gapless with a
linear dispersion, describing a superfluid associated with

fluctuations in n~
—n2. Note that a —decouples from the

electromagnetic potential and represents neutral excita-
tions. Notice that n~

—nz=(2 )tr'f ~z. From (4) we

see that the Maxwell term for a —is given by

8z
—(f-,i2)'+, (f-,p;)'

where v is the velocity of the linear mode and f
=t)„a—,—B,a „ is the field strength of the gauge field
a —„. The above is valid even when the two wells are not
symmetric.

Within the mean-field eAective theory, the appearance
of the gapless mode may be attributed to the coherent
fluctuation of flux and density [10,11]. Notice that the
electrons in the second layer behave like flux tubes of
—m@p flux to the electrons in the first layer (where @p is

the flux quantum). The electrons in the first layer see an
eflective magnetic field 8*=8 —mnz@p=(1 —mv2)8,

1812

arising from the spontaneous broken U(1) symmetry as-
sociated with N ~

—N2, characterized by ofI'-diagonal
long-range order in the hopping operator c~c2. (Here c~ 2

is the electron operators in the two layers. ) In the pres-
ence of interlayer hopping, the quantity N~ —N2 is no

longer conserved and consequently we expect a finite en-

ergy gap.
An eAective theory of the Hall fluid was developed

based on the Lagrangian [8,9]
r2+I1ctt r) "aJe„,i +g 23"t) "at E

4&, IJ I

+Maxwell terms (s)
involving the gauge potential aI, J =1, . . . , /. Long-
distance properties of the Hall fluid are determined by
the symmetric integer matrix K. In particular, the filling
fraction is given by v=+tJ(K )tj. This formalism is

particularly suitable for describing multilayer systems,
with the electromagnetic current in the Ith layer given by
J„=(2tr) 'it'at"e„„i., with the time component the elec-
tron density in each layers: Jo=nI. Here we focus on
two-layer systems with

where v~ and vq (with v~+ vz = I/m) are the electron
filling fractions in the two layers. Therefore the electrons
in the first layer have an effective filling fraction

&~
= n~@ p/8

1

1
—mv2 m

(7)
indicating the presence in Euclidean spacetime of a Dirac
monopole (or antimonopole), that is, an instanton.
Amusingly, in this formalism, interlayer electron hopping
corresponds to the instanton described by a monopole in

the gauge potential a —. This makes sense because the

This is why the electron wave function within the first
layer is the 1/m -Laughlin wave function, Q(z; —zj)
Similarly v2 =1/m. As we move an electron from the
second layer to the first layer, n~ increases, but at the
same time B* also increases since n2 decreases. The
eA'ective filling fraction v~, and similarly v2, remains un-

changed. It follows that such coherent fluctuation of flux
and density gives rise to a gapless mode. Note that the
correlation between electrons can only restrict the fluc-
tuations of the filling fraction. In the ordinary QH sys-
tern the magnetic field is fixed, and thus a density fluctua-
tion will change the filling fraction and hence has a finite

energy gap. In our case the eAective magnetic field and
density can fluctuate together without changing the
(eA'ective) filling fraction and lead to gapless excitations.
This argument is similar to the one we used in connection
with anyon superconductivity [10].

Because the linear gapless mode in the absence of in-

terlayer hopping indicates the spontaneous breaking of
the U(1) symmetry associated with the conservation of
N~ —Nz, we expect a phase transition (of Kosterlitz-
Thouless type) at finite temperature. A vortex in the
superfluid of N] —N2 is described by a particle that car-
ries a unit charge of a — gauge field [10,12, 13]. A

vortex-antivortex pair has an energy (2trc /tc) Inner~
—r2~.

From this we can easily determine the critical tempera-
ture T, = trv /2tc. The above result is just an estimate
because at finite temperatures v and K may have different
values than the zero-temperature ones. When the inter-
layer separation is of order magnetic length, e /mitt is the

only energy scale in the problem which determines both

T, and the charged-quasiparticle gap. Thus we expect T,.

is of order of the charged-quasiparticle gap. In the low-

temperature phase, the operator c~c2 has a long-range
correlation which decays algebraically. I n the high-
temperature phase, the correlation of c ]tc2 is short
ranged. At finite interlayer hopping, N] —N2 is no longer
conserved and the phase transition is expected to be
smeared into a crossover behavior.

Thus far the formalism does not incorporate interlayer
hopping. When an electron hops from one layer to anoth-
er, the currents J~] and J~2 are no longer separately con-
served. Indeed,

1dtd x8„(1~~ —J~z) = „dtd x9„(e""r),a i)
=+ 2
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electrons in layer I correspond to the flux quanta associated with aI. The monopole turns flux2 into flux. We have

shown previously that monopoles convert anyon superfluid into normal fluid [10].
Now the dynamics of the gauge potential a —has to be considered within a monopole-antimonopole plasma. Polyakov

[14] showed long ago that nonperturbative effects in the plasma generate an energy gap for a-. The effective theory for
the neutral low-lying excitations can be obtained following the calculations in Ref. [14]:

Zg
Xdr= ———(cI„J-„) +—ic(J-,„) +—ye"" J—„cl„J i+Pe"' J „F„+ e"""A„cl„A

4z
(8)

in units with U= 1. Here J—„=J„'—J„(e.g. , J o=n~ —n2) is the difference of the electron densities and currents in

the two layers. The first term is due to the monopole plasma (i.e., the interlayer hopping of electrons). g is the proba-

bility of finding a monopole in a unit spacetime volume (g is proportional to the interlayer tunneling rate) and x is the

coefficient in (6). We estimate g to be of order AsAs/la, where hsAs is the energy gap between the symmetric and the

antisymmetric states in the double wells (hats is proportional to the interlayer hopping amplitude), and ln the magnetic

length. The last three terms violate time-reversal symmetry and parity and are induced by integrating out a+. The pa-
rameters y, P are independent of the interlayer hopping. From (8) we can calculate the correlations between J „'s:

k„k„p2/ic k„k„y ' e„„ik"

x-2/ 2+k2 — 2 "
k 62+k' —co k x /y +k —co

(9)

where 6=Jgx-(AsAsic/lii)' . From (9) we see that
there is a low-lying mode with gap A. (Note 6 0 as the
interlayer hopping approaches zero. ) This low-lying exci-
tation is the longitudinal mode k„J—„. The transverse
modes satisfying k„J-„=0have a large gap tc/y At th.is
energy scale the effective theory (8) may not be reliable.
(Note that there is no pole at k =0.) We would like to
emphasize that we only have a single low-energy mode.
The transverse modes have no dynamics at low energies
(e.g. , they do not contribute to the low-temperature
specific heat). Using the effective theory (8) and the
correlation function (9) we can study various properties
of the low-energy mode. Since the low-energy excitations
described by J- „only couple to the field strength F„„in-

stead of the gauge potential A„, they have no net electric
charge, but they have some magnetic and/or electric di-

pole moments if the symmetry between the two layers is

broken. [Note P=0 if there is a symmetry between the
two layers. In this case the effective Lagrangian (8) must
be invariant under J— —J— and J— cannot have a
linear coupling to A„.] Putting back the velocity v, we
have 6- (hs~sx/lii) ', independent of v, giving the
dispersion relation of Ek =(ci k +6 )'i for the neutral
low-lying mode.

Using the formalism described in Ref. [10] we can
readily determine the charge and statistics of the quasi-
particles and verify that in the presence of the gap the
fluid described here is in the same universality class as
the v= I/m Laughlin state.

An electric field 8 perpendicular to the plane will gen-
erate a dipole moment due to charge imbalance in the
two layers. The induced dipole density is given by
D =e(nl n2)d= gC, w—here d—is the separation between
the two layers. The coupling between J „and 8 is de-
scribed by (ed)CJ- o. From (9) we see that, at frequen-
cy co and wave number k, the susceptibility g is given by

g2+ &2k 2

g(co, k) =
+2+ t) 2k 2 ~2

e 2d2
(10)

for small (co, k) and h. Thus the neutral excitations can
be observed through the resonance at co=(6 +U k )'i,
with an (integrated) strength proportional to (e d /K)
x (5 + U k 2) 'i . The effective Lagrangian also contains
a term -88 which can be detected, at least in principle,
in the propagation of polarized light. Taking into ac-
count the angular character of the order parameter, we

find [15] that a voltage V applied across the two layers
generates a tunneling current proportional to sin(eVt/t'2).

If we can attach leads to the individual layers, then we

can generate electric fields with opposite directions in the
two layers (i.e., E—=El —E2&0). The pseudoconduc-
tivity defined by J—=~—E is given by the Oi com-
ponent of the J -current correlation (divided by i2k)

cr (co) = ho i co e
2tc Q —co2

Note when h, =0 the above reduces to the conductivity of
a superconductor.

When the intralayer and interlayer interactions are
equal and in the absence of hopping, the system has an
additional symmetry [16,17]. The presence of the gapless
mode can also be derived from this symmetry. To de-
scribe the higher symmetry, let us view the electrons in

the two layers as a pseudospin doublet (i.e., the electrons
on layer 1 carry pseudospin 5, =

& and layer 2 5,
= —

2 ). The interaction is invariant under pseudo-
spin rotation. Thus in addition to the U(1) symmetry as-
sociated with the conservation of the electric charge, the
system also has pseudospin rotational symmetry, part of
which is the U(1) symmetry associated with N~ N2. —
For the Coulomb interaction, the ground state at v=1

1813
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carries maximum pseudospin S =N, /2 and the electrons
from a ferromagnetic state of the pseudospins [16,18].
Therefore there exist gapless excitations corresponding to
the spin wave in the ferromagnetic state, with quadratic
dispersion relation co ~ k . We expect that the spin
waves are the only low-energy excitations above the
ground state Ot 1. All the low-energy excitations (i.e.,
the spin waves) are described by the effective Hamiltoni-
an

2

V
E (r '+ d '8 — ) ' ' '

where a, o.'=+
1 indicate the two layers and d can be

viewed as the interlayer separation. When d/lit &0.5,
+(]alii was shown to have a large overlap with the exact
ground-state wave function of finite electron systems at
v=1. This result, combined with the results in this pa-
per, suggests that the ground state support a gapless col-
lective mode with a linear dispersion at least when
d/lit & 0.5. Our results appear to contradict the numeri-
cal results in Ref. [19],where a finite energy gap is found
at d/lit =2 and v= l. However, the calculation in Ref.
[19] is performed with a fixed number of electrons in

each layer. In this case it is diScult to see the gapless ex-
citations. Therefore it might be possible that the system
studied in Ref. [19] is too small to see the gapless mode.

Because the low-energy mode is neutral, it will not
affect electric transport properties. The QH plateau will
not be destroyed by the presence of neutral low-lying ex-

(13)
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H = Jg—(s„'si+s,'si+ ~s,'SJ), (12)
where S' is the pseudospin operator of the electrons, and
we imagine the plane with a lattice spacing of the order
magnetic length. When the interlayer interaction is equal
to the intralayer interaction rI = I due to the SU(2) sym-
metry. When the intralayer interaction and the inter-
layer interaction are not equal to each other, the pseudo-
spin rotation symmetry will be broken down to the U(l)
symmetry associated with N] —N2. If the intralayer in-

teraction is stronger than the interlayer one (which is the
case in real samples), rl will be less than 1 [note S,
-n

1

—n2 and 1
—

ri —(intralayer interaction) —(inter-
layer interaction)]. In this case, we have an XI' model
with linear dispersion at small k, consistent with the
efrective theory analysis. Interlayer hopping corresponds
to adding a magnetic field in the x direction, that is add-

ing a term AsAsgs„' to the Hamiltonian since the hop-

ping is given by the pseudospin operator 25, . Thus it is

easy to understand that hopping will open an energy gap
proportional to hsAs. When the interlayer interaction is

stronger than the intralayer one, we have g) 1 and the
low-energy dynamics will be described by the Ising mod-
el. The electrons in the ground state occupy only one of
the two layers.

Many numerical calculations for the double-layer sys-
tem at filling fraction v=1 have been performed [16,
19,20]. In Refs. [16,19] the electron interaction is chosen
to be

citations. (Our results do not explain the collapse of the
odd-integer QH states observed in Ref. [I].) In Ref. [3],
a strong v=1 QH state was observed in samples with
small interlayer hoppings. Therefore, this state may con-
tain a low-lying neutral excitation with the dispersion
given in (9). Because the interlayer separation is of order
of the magnetic length, the velocity is of order e /eh
= c/137 c. It would be interesting to detect superfluidity
behavior experimentally in this system. The discussion in

this paper may be extended readily to multilayer systems
with finite filling fraction and described [81 by a matrix K
with zero determinant.
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