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While the study of waves in disordered media, including effects such as Anderson localization, and the
study of nonlinear systems, including effects such as soliton propagation, have each received considerable
attention, the combined field, nonlinear wave propagation in disordered media, is relatively new. A fun-
damental question is: Does nonlinearity weaken Anderson localization? In this paper we report the re-
sults of an experiment, which can provide conditions filling a gap in the current theory, showing that
states remain Anderson localized in the presence of nonlinearity.

PACS numbers: 71.55.Jv, 43.25.+y

Considerable progress has been made in understanding
the wave mechanical properties of disordered systems,
through extensive theoretical and experimental studies of
Anderson localization, coherent backscatter, etc. [1].
Similarly, there has been considerable theoretical and ex-
perimental research with nonlinear systems, including the
phenomena of soliton propagation, chaos, and other novel
effects [2]. Both of the fields of disorder and nonlinearity
are individually of practical importance as well as of fun-
damental scientific interest, and the two fields have un-

dergone rapid development independently, with relatively
little overlap. However, the combined effects of disorder
and nonlinearity occur frequently in nature, as in many-
electron mesoscopic devices, high-intensity optical sys-
tems, biological and polymer systems, etc. , and there
should be even more remarkable effects of fundamental
interest. For example, a fundamental question is: Does
nonlinearity weaken Anderson localization? Recently
there has been significant theoretical progress regarding
this question [3-10], but there have been few direct ex-
perimental studies. In this paper we report the results of
an experiment in a one-dimensional system which deter-
mines the effects of nonlinearity on Anderson localiza-
tion. Before stating the results, the question itself must
be clarified.

While powerful theoretical tools have been developed
for studying the consequences of disorder, the added
effect of nonlinearity greatly complicates the problem.
With respect to the question of nonlinearity weakening
Anderson localization, there are about eight theoretical
papers (or sequences of papers) in the literature [3-10],
and roughly half of these papers predict that nonlinearity
will weaken Anderson localization [3-61, and the others
predict that it will not [6-10]. While this statement
seems to imply a controversy, the theories are in fact not
contradictory, because, as is common in nonlinear prob-
lems, the question does not have a unique answer. For
example, one may pose a problem as involving a pulse (or
soliton) [3,4] or as involving an extended, single frequen-
cy wave [6,7] propagating through disordered scatterers;
in a linear system all results would be equivalent, simply
related by a Fourier transform. However, in a nonlinear
system the different ways of posing the problem are no

longer equivalent. Even in the case of an extended single
frequency wave there is more than one answer concerning
the effects of nonlinearity on Anderson localization. One
considers the problem of how the transmission of a con-
tinuous wave through a disordered one-dimensional re-
gion varies with the length of the region. If the incident
wave amplitude is held constant, then the transmitted
power is not necessarily unique, although it has been
shown [7] that the transmission may still decay exponen-
tially with length as for the linear disordered system. On
the other hand, if the output amplitude is held constant,
then one may obtain the unique result that the exponen-
tial decay is replaced with a power-law decay [6]. How-
ever, holding the output amplitude constant is not a typi-
cal way of defining a transmission measurement; usually
one holds the input amplitude constant, and in this case,
nonuniqueness notwithstanding, the Anderson localiza-
tion is not weakened.

Some of the theory papers [8-10] develop rigorous
theorems addressing the effects of nonlinearity on Ander-
son localization, such as, for example, the paper by Frol-
ich, Spencer, and Wayne (FSW) [8]. This paper consid-
ers the existence of exponentially localized solutions of a
Hamiltonian with a nonlinear term, and the result is that
under general conditions Anderson localization is still
present when there is nonlinearity. An interesting prob-
lem is the possibility of resonant tunneling resulting from
the nonlinearity. In a linear disordered system, resonant
tunneling is rendered unlikely by the low probability of
having two resonant subsystems sufficiently close together
to overcome the exponential decay of the wave function
between the subsystems; the result is large resonance-free
regions in the spectrum, and the subsequent absence of
diffusion. A gap in the FSW theory is whether or not
there exist special initial conditions which result in reso-
nant tunneling, enhanced by the nonlinearity, between lo-
calization sites. An important aspect of our experiment,
as will be discussed, is that it can test this possibility. We
find that, for a one-dimensional system under the condi-
tions of the FSW paper, the nonlinearity does not weaken
the Anderson localization, as predicted by FSW, and that
even under conditions which favor nonlinear enhanced
tunneling the Anderson localization persists. Our studies
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involve a range of amplitude of nearly 3 orders of magni-
tude, up to the point where the system becomes strongly
chaotic. The Anderson localization appears to be even

stronger at the largest amplitudes. It should be noted
that our results do not contradict the other theory papers
[3-7] since only the FSW and similar theories correspond
to our experimental situation, as described below.

Our experimental system is quite straightforward. The
one-dimensional wave medium consists of a steel wire of
mass per unit length p =2x10 g/cm stretched to a ten-
sion Tp, so that the speed of low-amplitude transverse
waves is co=(To/p) '~ =400 m/s. Transverse waves are
generated by an electromechanical actuator at one end of
the wire. The disordered potential field consists of a se-
quence of small weights of mass m =0.12 g randomly po-
sitioned along the wire; the average spacing of the masses
is a =20 cm, and the positions deviate randomly from
periodic lattice positions within a limit of 0.02a. The
masses accurately simulate a Kronig-Penny potential field

consisting of a series of delta functions with strength
mr0 /To, where co is the temporal frequency of the trans-
verse waves on the wire. For small amplitude transverse
waves, this potential field is found to produce Anderson
localized eigenstates with localization lengths on the or-
der of 6a [11]. The vibration field of the wire-mass sys-
tem is measured with an electrodynamic transducer
which can be moved along a track running parallel to the
wire, recording the amplitude and phase of the vibration
of the wire as a function of position. In the experiments
reported here, the frequencies were in the neighborhood
of what would have been the second transmission band if
the system had been periodic; that is, the frequencies
were such that approximately one-half wavelength fit be-
tween the masses. The losses in the system were quite
small; the resonances of the system at low amplitudes had

quality factors of —1500. The method of making mea-
surements was as follows: An amplitude for the drive ac-
tuator was selected, the receive transducer was left in one

position, the frequency of the drive was slowly swept, and

the spectral response of the system was recorded. Using
the spectral response, particular frequencies, correspond-
ing to Anderson localized states at low amplitudes, could
be selected, and the receive transducer could be translat-
ed along the wire, recording the wave field for the select-
ed frequency. The measurements were repeated for a se-

quence of increasing drive amplitudes, revealing the
effects of the nonlinearity of the system.

The nature of the nonlinearity in our system is one of
the important aspects of the experiment. To derive the
nonlinear equation governing our system, one first consid-
ers how the experimental situation is established. One
begins with an unstretched wire of length Lp, then applies
the tension Tp so that the wire stretches to a length
L =Lp+AL, and then adds the masses. The straight wire
of length Z is the equilibrium configuration for the sys-
tem. For infinitesimal transverse displacements from

7'0 1
"~ Be'T=Tp+ 1+

~L/L 1, &o Bx
dx —L ~. (2)

Tp/(hL/L ) is an experimentally accessible expression for
the Young's modulus of the wire. A more rigorous
derivation of Eq. (2) may be found in Morse and Ingard
[12]. Equation (2) may be expanded to first order in

(B+/Bx) and used to replace To in Eq. (1) to yield the
nonlinear equation of motion
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Because the nonlinear term involves an integral of the
displacement field, the nonlinearity is nonlocal, and this
increases the possibility of having nonlinear enhanced
tunneling between two localization sites. That is, a

large-amplitude transverse displacement at one localiza-
tion site will modulate the tension in the entire wire at
twice the eigenstate frequency. This modulated tension

may then parametrically excite a response at a distant lo-

calization site. The eigenfrequency (at low amplitude) of
the distant site may even differ somewhat from that of
the original site. The reason is that the finite-amplitude
displacement also increases the effective static tension of
the wire, so that lines in the spectral response are bent to-

ward higher frequencies, and may be bent over the top of
one another [13]. In this case states with different fre-

quencies at low amplitude may be excited concurrently at
the same frequency at finite amplitude. The initial condi-
tions of the experiment (as relevant to the FSW theory)
are arbitrary, depending on the state of the system prior
to adjusting the frequency of the drive.

With the possible nonlinear effects having been dis-

cussed, we can now present the actual experimental re-

sults. The simplest way to view the results is to examine
the spectral response (amplitude at a fixed site as a func-

tion of frequency), measured at a distance of about four
localization lengths from the drive actuator and normal-

equilibrium the equation of motion for the wire is

8 4
"Br' 'B"='

where +(x,r) is the transverse displacement field of the
wire. If the wire had a finite transverse displacement,
then the arclength of the wire would be greater than L,
and the tension in the wire would increase. Any local in-

crease in tension in the wire would travel as a longitudi-
nal sound wave in the wire. Because the speed of longitu-
dinal sound in the steel wire is greater than the speed of
the transverse waves in the wire, any change in the ten-
sion due to a local transverse displacement produces a vir-

tually instantaneous change in the overall tension of the
wire. A good approximation for the net tension T in the
wire simply involves the change in arclength for the entire
wire:

2- ii2
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ized by dividing by the drive amplitude, for different

drive amplitudes. If the system were strictly linear, then

the normalized response would not change. If the Ander-

son localization is weakened by the nonlinearity, then, as
the drive amplitude is increased, the normalized response
at the distant site should increase.

Our experimental results are presented in Fig. 1, which

shows a sequence of normalized spectral response plots
for a sequence of increasing drive amplitudes. The drive

amplitude, expressed as the amplitude of the electrical
signal applied to the drive actuator in volts, is shown in

the left column of numbers in Fig. 1. Below the lowest

amplitude in Fig. 1, the spectral response shows little
variation, but in the sequence of increasing drive ampli-
tudes shown, the spectral response shows some change.
For some of the peaks in the spectrum, for example, the

one indicated by the arrow in Fig. 1, the normalized
response increases with increasing drive amplitude, sug-

gesting that there might be some weakening of the An-
derson localization. However, this effect does not seem to
persist to the highest drive levels. Furthermore, an exam-
ination of the wave fields for the peaks which increase in-

dicates that the effect is due to the growth in amplitude
of sections of wire between a few masses only. Figure 2
shows an example of one such wave field whose peak in-

creased with increasing drive amplitude. Figure 2(a) is
the wave field (wave amplitude, normalized with the drive
amplitude, versus position, with the drive to the left in the
figure) for a drive of 0.01 V, and Fig. 2(b) is the wave
field for a drive of 0.50 V. While the normalized ampli-
tudes of a few sections have increased, the Anderson lo-
calization has not changed significantly. It should be not-
ed that for the wave field in Fig. 2, and in all of the mea-
sured wave fields, there was no significant harmonic gen-
eration observable.

None of the wave fields at any frequency which was
measured showed any significant reduction of Anderson
localization, in accord with the FSW theory. Further-
more, an examination of wave fields most likely to show
nonlinear enhanced tunneling (i.e., states at nearly the
same frequency localized at different sites) gave no evi-
dence of enhanced tunneling. The highest drive ampli-
tude in our measurements corresponded to a nonlinear
shift in the eigenfrequencies by as much as 15% of the
bandwidth (quite large by acoustic standards). Proceed-
ing to higher drive amplitude was prevented by the onset
of strong chaos in the system; because the Anderson lo-
calization concentrates the wave energy in a limited re-
gion, the state may act like a simple oscillator which
might easily go chaotic.

Returning to Fig. 1, it can be seen that most of the nor-
malized response seems to decrease slightly with increas-
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FIG. 1. Normalized spectral response for a sequence of drive
amplitudes. The left column of numbers displays the drive am-
plitude, expressed as the amplitude of the electrical signal ap-
plied to the drive actuator in volts. The right column of num-

bers presents the "average response, " defined as the integral of
the normalized spectral response over the entire frequency band
and normalized to the value at the lowest drive level (0.003 U).
The arrow indicates a state whose normalized amplitude in-
creases with drive amplitude, but the effect does not persist.

position (arb. units)

FIG. 2. The wave amplitude, normalized with the drive am-
plitude, vs position, with the drive actuator to the left. (a) The
wave field for a drive amplitude of 0.01 U. (b) The wave field
for a drive amplitude of 0.50 V.
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ing drive level, indicating stronger localization. A quanti-
tative measure of this effect may be found with an "aver-
age response,

" defined as the integral of the normalized
spectral response over the entire frequency band. The re-
sults for each drive level, normalized to the value at the
lowest drive level in Fig. 1, are presented in the right
column of numbers in Fig. 1. The decrease in the aver-

age response of about 30% with increasing drive ampli-
tude suggests that the Anderson localization is slightly
enhanced by the nonlinearity. One might imagine that
the nonlinearity causes an Anderson localized state not to
parametrically excite a distant site, but rather to "dig a

deeper hole" for itself.
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