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Equilibrium Properties of a Diblock Copolymer Lamellar Phase Confined between Flat Plates
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We study theoretically the equilibrium behavior of the lamellar phase of an A-B diblock copolymer
melt. Each lamellar layer is an A-B, B-A repeat unit and n such layers are confined between, and paral-
lel to, two identical flat plates. We find that the configurations with a half-odd-integer number of layers
occur only when the diA'erence between the two polymer-plate surface tensions is small, and then only
below some critical plate separation. We calculate the discontinuity in the pressure at the transition
point between two diA'erent values of n.

PACS numbers: 68.60.—p, 36.20.—r, 68.10.Cr

Certain diblock copolymers are known to self-assemble
spontaneously in the melt to form two-dimensional lamel-
lae [1]. Each lamellar layer consists of polymers which

are partially stretched in the z direction (say) while the
layer itself is liquid and retains translational symmetry in

the x-y plane. The self-assembly is driven by the immis-

cibility of the two chemical components of the polymer,
denoted A and 8. By forming a lamellar phase the sys-

tem minimizes the number of A -8 contacts, thereby sav-

ing energy which oA'sets the corresponding loss of poly-
mer entropy. In a system containing lamellar layers a
"stack" is formed in which the layers pile up alternately
A-8, 8-A, A-8, etc. This phase is a macromolecular
analog of the lyotropic smectic-A phases of liquid crys-
tals. These copolymer systems have been the subject of
much recent experimental [2-7] and theoretical interest
[8-10]. Some of these experiments [2-4] have studied
frustration in thin copolymer films at a substrate. When
the film thickness is other than an integer (or half-
integer) multiple of the lamellar thickness, "islands" or
"holes" are observed in the uppermost layer. It has been

suggested recently [11] that these surface structures may
even appear when the film thickness is "happy, " provided
the air-A and air-B surface tensions are diA'erent and the
"wrong" one is prepared at the upper surface (in this case
there is no significant change in elastic energy). Frustra-
tion in thin copolymer films is also the subject of the
present work, although here the film is confined between
t~o plates. The eff'ects of confinement on systems con-
taining surfactant bilayers has also been investigated ex-
perimentally [12], although these are somewhat diA'erent

from the copolymer lamellae that we consider here.
We study theoretically the equilibrium behavior of an

A-8 diblock copolymer melt which is confined between
two identical flat plates. Each polymer has a total degree
of polymerization N [13] and a monomer size b We dis-.
cuss the case ~here a fixed volume of polymer is confined
between two infinite plates. The situation where the
plates have finite size, and a reservoir of polymer is

present, is rather similar but will not be discussed here.
We also restrict our attention to the strong segregation
limit (for temperatures well below the ordering tempera-

ture, but above the glass transition) and assume that the
lamellar ordering occurs parallel to the plates. There is

now strong evidence to suggest that this type of surface-
induced ordering does indeed occur [5,6]. One lamellar
layer is defined to be an entire A-8, 8-A repeat unit.
The number of such layers between the plates n is either
an integer Z or half-odd-integer Z+ 2 . Configurations
("states") consisting of an integer number of layers will

be referred to as "symmetric" and those with a half-odd-
integer number of layers as "antisymmetric. "

Three important parameters in our model are y~g, gag,
and y~q. The first two describe the surface tension be-
tween the 3 polymer and the plate and the B polymer
and the plate, respectively, while y~~ describes the sur-
face tension at the A-8 interface. Each of these surface
tensions is dimensionless, in units of kqT/b . We choose

y~q ~ y~q, without loss of generality. Thus if the A poly-
mer resides next to only one of the plates the system is in

an antisymmetric state, while if it resides next to both
plates the system is symmetric.

In a bulk sample (no plates) the equilibrium layer
thickness L* (in units of b) is determined by a simple
balance between the elastic stretching energy of the poly-
mers and the surface tension which acts at the A -8 inter-
face [14]. Assuming that each polymer terminates at the
lamellar surface and that adjacent layers do not signifi-
cantly interpenetrate [15] we may estimate the elastic en-

ergy per polymer as F,~=(k/2N)(L/2), where L is the
layer thickness in units of b, and k/N can be thought of
as the entropic "spring constant" of the polymer (k =3
for a Gaussian chain). The energy associated with the

Binterface is m-erely F~q =2Ny~g/L per polymer.
Minimization of F=F,]+F~~ then determines the equi-
librium (bulk) layer thickness L * = (8 yzz/k ) ' N
corresponding to a minimum free energy per chain
F(L*)=3(ky~g/8)'~ N'~'. In what follows it is con-
venient to express all lengths in units of L* and all ener-
gies in units of F(L*).

We now return to the case where the lamellar phase is

confined between two infinite plates. By including the in-
teraction between the polymer and the plate surfaces, as
well as the terms F,~ and Fgp, we obtain the total free en-
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ergy per polymer P, in units of F(L*):

I d 2n I I - (- I) '"
P(n, d) =— — + +—2I +8

3 n d d 2

Here I =y~s/y~s, 8=(yes —y~s)/y~s, d is the plate
separation in units of L*, and we have used the identity
d=nL/L* to eliminate the lamellar thickness as a pa-
rameter. Since the constant k does not appear explicitly
in this expression the discussion that follows is indepen-
dent of the prefactor in F,i. Note that we have neglected
the effect of the polymer-air interface which exists at the
edge of the sample, with an associated surface tension

y„,. This is appropriate provided the sample is thin

enough, d«L (y~s/y„,) (V/ir)'/, where Vb3 is the
volume of the sample. Similarly we have assumed that
the polymer remains in contact with the plates. For this
to be the case the ratio y„,/y~s need only be slightly
greater than unity (experimentally y„„/y~smight typi-
cally be of order 10). We will now minimize 7 to find

the equilibrium number of layers n (d) and thereby P(d).
Since the system is quantized (n is quantized) we cannot
merely minimize P, treating n as a continuous variable.
Instead we seek to determine n(d) by calculating the
points at which there is a transition from one value of n to
another. This occurs when the energies of the two states
(n values) coincide. We first determine the plate spacing
di at which the energies of the n and n+I states coin-
cide. Solving P(n, di) =V(n+ I,di) we find

dl =[2n (n+I) /(2n+I)l'/ .

We next find the plate spacing d2 at which the energies of
the n and the n+ 2 states coincide. Solving P(n, d2)
=P(n+ —,', 12) we find

[/2 2(/i+ I ) 2[1+($( I ) 2n]/(ri+ i )j I/3

When b & I there exists no real, finite d2 for the antisym-
metric states (n 6Z+ —,

' ). This indicates that only the
symmetric states occur for 8 & 1.

We now determine for what values of d the antisym-
metric states are accessible and when it is only the sym-
metric states which occur. We do this by determining the
sign of the free energy difference, AP =P(n+ —,',
d2(n)) —P(n+ I,d2(n)), for a general symmetric state.
This procedure determines whether the n+ 1 or the n+ 2

state is energetically preferable at the point at which a
transition from the n to the n+ 2 state may occur.
When h, 9' & 0 both the symmetric and the antisymmetric
states are accessible, otherwise only the symmetric states
exist. Using our expressions for 7 and d2 we find

ll (/l+ 4 )
h,3' =

(n+ I) (n+ —,
' )

We may now solve h,9 =0 to find the critical value
n* E Z. For n & n* the antisymmetric states occur; oth-
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FIG. 1. Plot showing two different regions in the d-b plane.
In the upper region only those conformations with an integer
number of layers exist, while in the lower region, close to the d
axis, conformations with a half-integer number of layers occur.

erwise only the symmetric states exist. In order to take
account of the discrete nature of n* we introduce a real,
continuous variable m, which is the solution to hV(m)
=0 (a cubic equation in m, with only one positive root).
We then have n* =Int[m]+ I, where Int[m] is the larg-
est integer less than or equal to m. For 6((1 we find

m =3/48+0(1). Hence m diverges as 8 0; in this lim-

it there is no energetic penalty associated with the an-
tisymmetric states. For 8 & 0 we observe that I is mono-
tonically decreasing with 8, reaching zero at b=l. For
6& I only the symmetric states occur [16]. We define
d* =d2(n* —

2 ) to be the plate separation below which

antisymmetric states exist. A plot showing the variation
of d with 8 is shown in Fig. 1.

We now have a complete description of the equilibrium
conformation of the system. We find that the number of
lamellar layers is given by

n = (Int [ad]+P)/a,
where a = 1+8(d —d), P =8(d, (intlad]/a) —d), and
8(x) is the usual 8 function: 8(x) = I if x & 0, and oth-
erwise 8=0. To see how this expression for n is obtained
consider the following: n depends on whether d is above
or below the transition point between two states (one
state where the layers are slightly compressed and one
where they are slightly expanded). The term P takes the
position of this transition into account. The other term a
takes care of whether the number of layers changes in in-

teger or half-integer steps. The above results, combined
with our expression for the free energy, determine the
free energy as a function of the plate separation d. A plot
of P(d) is shown in Fig. 2.

We may now calculate directly the scaled pressure
II =|IV/tId using the above results and our expression for
the free energy P. Thus we adopt the convention that a
positive pressure acts to reduce the plate separation. We
are particularly interested in the behavior of II near a
transition point, where the number of layers changes. We
define Ii (n) to be the pressure exerted by the n-layer
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FIG. 2. The scaled free energy per polymer 2 as a function
of the plate separation d for the values 8=0.15 and 1 =0.1.
The cusps in 7 correspond to the transition points where the
number of layers changes. There is a discontinuity in the pres-
sure at these points. The value of d*, below which the antisym-
metric states exist, is shown by a vertical dashed line.

state when the plate separation d is marginally below the
transition point. For slightly larger values of d a state
with a greater number of layers is energetically prefer-
able and the pressure is written II+(x). The magnitude
of the discontinuity in the pressure at the transition point
is h,H =0 —H+. It is also possible to show that a local
minimum in the free energy exists if and only if
II (n)) O.

In what follows we will calculate the variation of h, H

with n. We consider first the case n & n* where only the
symmetric states occur. Using II (n) =II(dl(n), n) and
II+ =II(d1(n), n+ I ) we find

alI(n) =2/d'.

We now turn to the other case n (n*, where

II (n) =II(d2(n), n), II+(n) =[I(d2(n), n+ —,
' ), and

both the symmetric and the antisymmetric states occur.
We first consider the case where the system changes from

a symmetric to an antisymmetric state, in which case
N E Z, and AII is given by

~II =(I+S)/d'.

Finally we consider the case where the system changes
from an antisymmetric to a symmetric state. In this case
n EZ+ 2, and we fin

~II =(I —a)/d'.

As 6 1 the discontinuity in the pressure vanishes for
the antisymmetric to symmetric transitions. This is to be
expected since a discontinuity in the pressure signifies the
existence of a transition and such transitions are now

known to be absent for 6'& 1.
It should be possible to study systems, like the one con-

sidered here, using an atomic force machine. In this case
the pressure H may be measured as a function of the
plate separation. Discontinuities in the pressure signify a
change in the number of layers present and a direct com-

parison with our predictions may be possible. Note that
in the present work we have been concerned with equilib-
rium properties only and have therefore not attempted to
describe the dynamic processes involved in either creating
or removing a layer. The creation of a new layer requires
at least a local disruption of the lamella order. This al-
lows material to pass to the new layer, which may grow

by the propagation of an edge dislocation away from the
disrupted region. The finite activation energy for this
process will result in some hysteresis between compres-
sion and expansion of the plates. For thin samples, with a
large volume, this activation energy may turn out to be
small. This is because the size (and energy) of the dis-

rupted region might be expected to remain roughly con-
stant while the maximum energy of an edge dislocation
scales like the sample size and all other terms in the ener-

gy are much larger, since they scale like the sample area.
Finally note that the equilibration time after a change in

n may be rather long.
In summary we have determined the configuration

adopted by a copolymer lamellar phase when it is con-
fined between two Aat plates. We have calculated both
the free energy as a function of the plate separation and
also the discontinuity in pressure AII-d at the transi-
tion point, where the number of layers in the system
changes.
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