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Kinetic Roughening in Surfaces of Crystals Growing on Disordered Substrates
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Substrate disorder eA'ects on the scaling properties of growing crystalline surfaces in solidification or
epitaxial deposition processes are investigated. Within the harmonic approach there is a phase transition
into a low-temperature (low-noise) superrough phase with a continuously varying dynamic exponent
z & 2 and a nonlinear response. In the presence of the Kardar-Parisi-Zhang nonlinearity the disorder
causes the lattice eA'ects to decay on large scales with an intermediate crossover behavior. The mobility
of the rough surface has a complex dependence on the temperature and the other physical parameters.
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Much progress has been achieved recently in the un-

derstanding of kinetic roughening in nonequilibrium sur-
face growth [1-13]. In particular, spatial and temporal
scaling properties have been predicted for surfaces of
crystals growing either by solidification or from epitaxial
deposition [1,2]. The simplest analytical models neglect
the discrete structure of the crystal and the scaling prop-
erties are determined from the university classes of the
continuous kinetic equations which govern the growth
process [3-5].

The lattice structure [6-13], however, has crucial
eA'ects on the behavior with a kinetic phase transition
mirroring the equilibrium roughening transition (ERT)
[14]. The transition is governed by the noise, i.e.,
thermal and from the inherent stochasticity, of the
growth process [5-7,13]. In the presence of a strong
noise the surface is rough (in analogy with the rough
equilibrium phase for T & T„where T, is the ERT tem-
perature). In this phase the lattice effects are unimpor-
tant and the dynamic properties are the same as in the
respective continuum models. In the low-noise phase the
surface is smooth on an intermediate scale (which be-
comes larger the smaller the average growth rate is) with
drastically different dynamic properties [6,7].

In view of the crucial importance of the discrete struc-
ture at the low-noise regime, the following question
should be addressed: What if the substrate on which the
solid grows is not perfectly smooth? While all previous
studies have assumed a perfectly flat substrate, in many
potential realizations that will not be the case. The
eAects of quenched disorder in the substrate on the kinet-
ic scaling properties of the growing crystalline surface are
the subject of the present Letter. As detailed below we
find that in the presence of substrate disorder the low-

noise (or low-temperature) regime has dramatically
difl'erent kinetic properties [15].

The scaling properties are manifested in the height-
height corre1ation function:

Q(L, r) =&Ah (L, r)) =([h(x+L,t+r) —h(x, t)]
-L 'f (r/L'),

where h(x, t) is the height of the surface at point x and

time t. The roughness exponent a characterizes the
long-time limit of the self-affine fractal structure as rep-
resented by the "surface width" w(L, r) =(Ah 2(L, r)) tz

=L'. At an early stage of the growth (r((L') w-r~,
where P =a/z and z is the dynamic exponent. Theoretical
studies of kinetic surfaces have been conducted within
two approaches: the "harmonic" approach [3,6,7] and
the "nonlinear" approach [4, 13]. While the latter takes
into account the lateral growth of an oblique surface, the
former applies to discrete systems for which the nonlinear
effects are negligible [16-18]. Our subsequent analysis
follows this tradition.

I. Harmonic approach. —The kinetic equation for the
time evolution of the height within this framework is

—
ypy sin(yp[h(x, t)+d(x)])+((x,t),

(2)

where p is a microscopic kinetic coefficient, F is the driv-
ing force proportional to the difference in chemical poten-
tial for solidification or determined by the rate of deposi-
tion for epitaxial growth, v is the surface tension, y is the
coefficient of the leading term due to the discreteness
(higher harmonics are less relevant [6]), yp =2tt/b where

h(x)

d(x)

FIG. l. A two-dimensional cut (along a lattice plane perpen-
dicular to the disordered substrate) of the three-dimensional
system.
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b is the vertical lattice spacing, and g(x, t) is the noise
term with (((x,t)g(x', t')) =2DB(x —x')6(t —t') .Note
that this equation of motion can be derived from a Ham-
ilton ian p

' Bh/t3 t = —BP/Bh + (, detailed balance is

obeyed, and at (or slightly off) equilibrium the tempera-
ture of the system is T=Dp Equ. ation (2) controls the
lattice growth upon any generic rough surface, whatever
the origin of the imperfections is. We consider the finite
quenched fluctuations d(x) of the substrate height (for a
schematic description see Fig. I) to have only short-range
correlations and to be at least of the order of the lattice
spacing of the bulk solid b [Fo.r ~d(x)

~
&&b the disorder

is irrelevant. ] Definin~ 9(x) =yod(x), the phaselike vari-
ables 8(x) obey (e' " e ' * ) =a 8 (x —x'), where a is

the lattice spacing in the horizontal planes.
In the absence of disorder [d(x) =0], lattice effects

have been studied within the harmonic framework by
Chui and Weeks (CW) [6] and later by Nozieres and

Gallet (NG) [7]. Their important findings were the f'ol-

lowing: For Dp =T & T„, the kinetic (as the static) be-
havior is unaffected by the lattice potential, C(L, r )
—(lnL)f(r/L ) [corresponding to a = —,

' (3 —d) =0,
z =2] and the macroscopic mobility p~ =limF .Oi /F
(i =(Bh/rft), the average growth rate) is finite. F'or
T & T„ in the smooth phase, the surface tends to be
pinned at the periodic minima, and pM =0 (with a finite

jump at T=T, ) For. finite F, therefore, the growth is
"activated" with nucleation [19,20] of higher "islands. "

To apply the renormalization-group (RG) approach to
Eq. (2) with the substrate disorder, we use the Martin-
Siggia-Rose (MSR) formalism [21]. In addition to
h(x, t), an auxiliary field h(x, t) is introduced as well as
their conjugate "sources" J(x,t) and J(x, t). The
thermal noise and the quenched disorder are averaged
upon to yield the following averaged generating function-
al:

Z[J,J] =~ 2)h 2)h exp&

r

d xdt Jh+Jh+Dp h —h —pvV h

2 2

+ „„dxdtdt'h(x, t)h(x, t')cos(y[h(x, t) —h(x, t')]) '

fO

+—p v I d xdtdt'Vh(x, t)Vh(x, t'), (3)

with g =y a . The last term has been included since it is

generated under renormalization.
Our RG analysis of this eA'ective field theory follows

closely that of Goldschmidt and Schaub for the XY model
with random anisotropies [22] (details of the calculation
will be published elsewhere [23]). Under rescaling
x e'x and t e't (I =lnb where b is the rescaling fac-
tor) the RG analysis yields, to lowest nontrivial order in

g, the following recursion relations:

dv
dl

dv

dl

dF
dl

dD
dl

4v(Dp )

= 2 —z+~~ D,
'Kc

Dp

(4.)

(4b)

(4c)

(4d)

dl Dp v
(4e)

dl 2trv (Dp) z
(4f)

The last equation provides the other parameter of the ex-
pansion 6 = y Dp/4trv —I (the deviation from the critical
point) and these equations are of the first order in 8. y
remains at its bare value y= yo and v at vo (we may re-

scale h such that vo = I). We first look at the static prop-
erties by defining T =Dp. It obeys dT/dl =0 and the last
equation can be written as

d
dl

T 2z 2

with T„=vb /tr. We recognize the static equation of
Cardy and Ostlund for the random-anisotropy XY model
[24]. Toner and DiVincenzo have analyzed these equa-
tions in the context of equilibrium crystal surfaces with

bulk disorder in a limit where their bulk disorder is

equivalent to the substrate disorder considered here [25].
So their results directly apply: For T & T,„, g 0, the
disorder is irrelevant, and w(L) —(lnL) 't . For T ( T„,
g approaches a finite value g* ——6=1 —T/T„, disorder
is relevant, and the surface becomes superrough [25]
w (L) —lnL.

We now turn to study the kinetic properties. I n the
high-noise regime (8&0) we find z =2. In the low-noise
regime: increases (the width spreading becomes slower)
continuously as z =2+4& ~6~ with c = —,

' e —0.7931,
where F. is the Euler constant. The mobility p~ far from
the transition in the high-Dp(=T) noisy phase assumes a

finite value. Approaching T,„ from above, however, p~
vanishes with 6 continuously. Integration of the recur-
sion relation yields p M

= (p /2rr0g )~ 6o)
" with tf

= 2/ Jc
—1.58. In the low-noise phase p~ vanishes as
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2-

1

0~

—(z' —2)t 4—Ji laiteF Fo
The behavior of z and p~ as a function of T is summa-
rized in Fig. 2.

Physically the dynamic behavior in the superrough
phase may be understood as follows: The superrough
phase is a phase in which the disorder barely dominates
over the thermal fluctuations [25]. The increased rough-
ness is the result of the surface attempt to balance the
tendency of the surface to adjust to the substrate (making
h+d an integer multiple of b) without paying too much
in elastic energy. Although the pinning is not uniform as
with a smooth substrate the effect of locally preferred lo-

cations is enough to slow the spreading of the surface
width (as manifested by z & 2) and to prevent it from
moving with a uniform average velocity when an
infinitesimal driving force F is applied. Naturally if a
finite force is applied the surface will move, on the aver-

age, at a constant velocity. This motion will wipe out the
pinning effect (as it does to the periodic potential in ab-
sence of disorder). If the force F is small the behavior
described here will hold up to a scale L &L*-aF
and the eff'ective mobility will be

(l 4 lnL 4 ) (L 4 ) 4' i—tti F2&el sl

It should be emphasized that this yields another impor-
tant finding, namely, the nonlinear response to a small F
in the presence of which the averaged velocity scales as
F 'i i+'. This explicit behavior was derived based on
scaling near the critical point but is also consistent with
activated dynamics over free-energy barriers [26] E(L)
given by e(T) lnL with e(T) =4Jc (T,„—T).

II. The "nonlinear" approach. —Kardar, Parisi, and
Zhang (KPZ) have pointed out that when the lateral
growth of an oblique surface is accounted for the most

(Sa)

relevant effect is the addition of a term of the form
—,
' X(Vh) to the growth equation [4]. In the absence of

any lattice or disorder eff'ects the KPZ equation is

p
' =F+vV h+ —(Vlt) +((x,t),

Bt 2

and the exponent a and z change [1] from a =0 and z =2
for A, =0, to c—0.4 and z —1.6.

The question of whether a phase transition may occur
in the presence of nonlinearity and a lattice with a per-
fectly flat substrate has been considered in a number of
recent simulations of deposition (or growth) of discrete
particles [8-12); For example, the observed transition
between logarithmic and power-law behavior of w (L) by
Amar and Family [8] has been attributed to an effective
vanishing of the nonlinear term in their discrete model
[16-18]. An extensive analytic study which includes both
the lattice effects and the nonlinearity was performed by
Hwa, Kardar, and Paczuski (HKP) [13]. Studying the
intermediate scale L &L*, HKP identified two phases.
One is the high-temperature (strong noise) rough phase
crossing over to KPZ scaling [131. Approaching the
transition from this phase the mobility vanishes as
(ln i T —T, i) ~. They also argue that for T & T, (lower
noise) the surface is flat. This identification requires
some caution since the generation of a term yzcos(2nh/b)
from the contraction of the terms ytsin(2zh/b) and
—, k(Vh) was not considered. Combining both terms into
the form iyi sin[2nh/8+8(l)] [with y =yt +y2 and
0(l) =tan 'yz/yt], we find that for T & T, the flow is
indeed toward iy( ~ but the phase shift angle is rotat-
ing like 8(l) =tel with l, -to)/vt. Thus, this low-

temperature phase is not characterized simply by an in-
crease of the periodic potential. Higher-order terms in

the recursion relations of yt and y2 and that of v will be
required to identify with more confidence the nature of
the low-temperature phase.

We now turn to the effect of substrate disorder in the
presence of the KPZ nonlinearity: The RG analysis be-
comes much more complex. It turns out that a systemat-
ic expansion in the parameter b=Dpy /4tr 1 requires-
the consideration of diagrams containing up to three non-
trivial loops. Sophisticated techniques, based on dimen-
sional regularization, were employed to extract their
singular parts [23]. The following recursion relations for
x xe', t te ' were derived (y = To):

d
dl

1.00
0

1.25

dv

4v(Dp) '
dF
dl

=2F+zk,

(Sb)

(Sc)

FIG. 2. The dependence of the linear response macroscopic
mobility p~ (bold line) and the dynamic exponent z (dashed
line) on temperature for the harmonic model. The arrows indi-
cate the appropriate scales on the vertical axis. (R, the rough
phase T)T„;SR, the superrough phase T (T„).dD X D + T ~cg

dl 8x Dp
Dp+

dP T'hg
dl Dp

(Sd)

(5e)
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dg
2 DPy X c 2x

dl 2tr y~ (Dp ) ~
(sf)

dk =0, (5g)

where vo is set to be 1 and c'-180.08. Combining the
equations for D and p together we find (T=Dp)

dT(l)
dl

k2
, T(l),

2y'

d (l) T(l) c') '
g(l) '—

g '(l) .
8~2

(7)

The most important observation is that the nonlinearity
increases the eA'ective temperature T(l) and, as a result,
the eA'ective coupling g(l) becomes smaller. The only
fixed point has T—Toe ~ 0o and therefore g — 0.12l/2y2

The equation for g(l) can be integrated exactly:

1 1 s(l) f s(l) d
—s(x)

g(l) g 8tr

where

(8)

r

4
s(x) =

2
—2 x+ To y (ex -"tz& —

I )
,

r'
The behavior on long scales will have g 0 and the
eA'ective KPZ coupling K=A, Dp/v (note that to these
orders in 6', g, and k, the flow of this coupling is
unaA'ected by g) will control the behavior.

However, since the scale associated with the increase of
the KPZ coupling is exponentially large L~ =ae " ' it is
likely to be larger than L* (the scale set by F). There-
fore on scales smaller than L* a rough surface will be ob-
served but it will be in a crossover regime. If A, o and/or
To are small (especially with go large), g(l) will decay to
zero quite slowly. This will be observable in the mobility
which has the scale dependence

4J ~l
p(l) =p()exp' — dl'g(l')

with g(l) given in Eq. (8). pst-p(l* =lnL*) will be
drastically reduced by the disorder eA'ects (as they decay
on intermediate scales) compared with its bare value po,

'

the same will hold for the width w(1) when compared
with the g =0 case.

To summarize, we have investigated how the scaling
properties of growing crystalline surfaces are affected by
disorder in the substrate. For T & T,.„ in the harmonic
approach, the surface is superrough with anomalous
dynamics. The height-height correlations are C(L, r )—(lnl )'f(L/. -) with; =2+447(i —T/T„).
same time the response becomes nonlinear: ~

—F~+' with
j=2uc (I —T/T„) In the presence of th. e KPZ non-
linearity a complex reduction in the width and the mobili-
ty of the rough surface have been obtained. These effects
may be discernible in future precise measurements of
solidification and epitaxial deposition processes.
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