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Damping of Ion-Acoustic Waves in the Presence of Electron-Ion Collisions
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The properties of ion-acoustic waves in a plasma are investigated by analytically solving the electron
Fokker-Planck (FP) and cold-ion fluid equations for arbitrary electron-ion (e i)-collision strength. This
is achieved by developing a reduced form of the FP equation with a generalized collision frequency. It is

demonstrated that the effective wave damping can be treated as a combination of collisional and col-
lisionless mechanisms. Contrary to several previous reports, weak e-i collisions are shown to increase the
damping rate above the collisionless electron Landau limit.

PACS numbers: 52.35.Fp, 51.10.+y, 52.35.Qz

The study of ion-acoustic waves in plasmas has been
the subject of considerable interest for the past thirty
years [1-7]. Their damping rate plays an important role
in establishing the threshold for the onset of stimulated
Brillouin scattering, ion-temperature-gradient instability,
current-driven ion-acoustic instability, and other drift-
wave microinstabilities. In a collisionless plasma the
waves are predominantly damped by electron Landau
damping for ZT, » T;, and by ion Landau damping for
ZT, —T; (where Z is the ionic charge and T is the tem-
perature). The contribution of ion-ion (i i) coll-isions to
the damping is well understood, and the eigenfrequencies
cp have been calculated for arbitrary values of kit; (where
k is the wave number and Xtt is the i imea-n free path),
assuming isothermal electrons [I]. Kulsrud and Shen [2]
were among the first to calculate the efl'ect of introducing
weak electron-ion (e i) collisi-ons. They solved the
linearized electron Fokker-Planck (FP) equation by ex-

panding the distribution function about the collisionless
result, and showed that for kl,„»1 (where X„. is the ei-
mean free path) electron collisions give rise to a fraction-
al reduction in the Landau damping rate of order
(m;/Zm, )/kX„. This curious "undamping" effect has
been attributed to collisional disruption of the wave-

particle resonance. It has since been confirmed by many
authors using various models for the collision operator
[3-5]. It has even been suggested that such an undamp-

ing effect, including possible instability, could be demon-
strated experimentally [5].

In this Letter we present the first calculation of ion-
acoustic wave damping based on an analytic solution of
the electron FP and cold-ion fluid equations, for arbitrary
e icollision-ality (omitting e ecollisions). T-his has been
achieved by developing a reduced form of the FP equa-
tion with an (cp, k)-dependent e icollision -frequency.
We show that the total damping rate can be accurately
obtained by adding a collisional damping rate (arising
from thermal diffusion) to a co11isionally reduced Landau
damping rate (arising from wave-particle interaction).
However, despite the collisional disruption of Landau
damping, collisional damping itself prevails so that there
is no net undamping of the ion-acoustic wave. In fact, as
e-i collisions are introduced the damping rate y rises

monotonically above the collisionless Landau limit yL,
reaches a peak at k)t,„—(Zm, /m;) 'l (where the thermal
diff'usion rate is approximately the sound transit rate),
and then decreases to zero as kk„0, as predicted by
fluid theory. The undamping effect predicted by previous
authors is found to be an artifact of the method used in

the derivation of the dispersion relation, which in most
cases involved expanding the distribution function about
the collisionless limit. Huang, Chen, and Hasegawa [4]
realized the problem associated with this approach and
adopted the approximate method of splitting the electron
distribution function into collisional and collisionless
parts. However, by failing to correctly obtain the contri-
bution from the highly collisional low-velocity part, they
also predicted a reduction in the damping rate below ) L.
Dum [6], who considered this problem in the context of
strong turbulence, did indeed find that e icollisi-ons
enhance the damping. However, his equations were not

energy and momentum conserving, so that his results
were only valid in the weakly collisional limit (i.e.,
kk,„»1). Recently, Bell [7] investigated the effect of e i-
collisions on sound waves over the range 0 & k)j.„.& 1

(i.e., for strong to intermediate collision strength) and
found an enhancement in the damping above fluid-theory
predictions for kk„&0.01. He attributed this enhance-
ment to a reduction in the thermal conductivity below the
classical Spitzer-Harm (SH) [8] value. In this Letter we
also demonstrate a reduction in the thermal conductivity,
and by extending the results to the collisionless limit
(kk„» 1) we show that the effective thermal conductivi-
ty approaches the collisionless value calculated by Harn-
mett and Perkins [9].

We start by assuming a homogeneous plasma where
the electrons collide elastically with cold fluid ions only.
Therefore, we neglect e ienergy exc-hange (since m, /m;
«1) [4] as well as i icollisions. Th-e effect of e ecol--
lisions which is expected to become important for low-Z
plasmas, will be considered in a subsequent paper.
Adopting a perturbation of the electron distribution func-
tion of the form

f(x,v, t) =Fp(v)+ g ft(v)P((p)exp[ —i(cot —kx)], (1)
I 0
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where p =v, /v and Pt(p) is the ith Legendre mode, the

linearized electron FP equation (defined in the rest frame

of the ions) becomes [10]

iku; r)Fp
[l =0

3 l9v

—irof i+ikvfii+ikv fp—— —icuu;
5 m,

lrofo+ fi (2)

BFp
vif i

l+1
irofI+ ikvf~ i+ — ikvf~+i = —vtft

2l —
1 21+3

(5)

for I & 2.
The ion velocity u; and electric field E are first order in

the perturbation and Fo(v) =N, (2rrv& ) i exp( —v /

2v, ) is an equilibrium Maxwellian, where N, is the back-

ground electron number density and v, =(T,/m, )'i is

the electron thermal velocity. The collision operators are

given by vt(v) =v(v)l(l+ I)/2, where v(v) =4rrN, Z(e /

m, ) lnA/v is the velocity-dependent e-i angular scatter-

ing collision frequency, e is the electron charge, and lnA

is the Coulomb logarithm.
Substituting Eqs. (5) and (4) into (3) we obtain the

following reduced form of the f i equation, which includes

all contributions from fq, f3, . . . .

(3)

2 . 3 . 2 . 8Fp—irvfp+ —ikvfi+ —ikvf3 — iku—;v = —v~fp, (4)
3 7 3 r)v

and

N; is its background value. Inserting Eqs. (2) and (3')
into (6) and (7), and assuming quasineutrality (i.e., Zn;
= 4irjdv v fp), we obtain the dispersion relation

(1+riJ4) I 2
g @JAN+kc, J7 3 z

where c, =(ZT, /m; ) 'i is the isothermal sound speed,
r i ]/2

2 "
d

V exp( —V /2)
V —

3 @ (1 —i co/v i )H i

(8)

V=v/v„r) =i(v~/v, )/kX, is a collisionality parameter, v~

=ra/k is the phase velocity, and kI =X(v, ) is the e i-
scattering mean free path.

Equation (8) has been solved for co=co, —iy, and the
normalized ion-acoustic damping rate y/kc, is plotted in

Fig. 1 (solid curve) as a function of kX„, for A =2Z
[where A is the atomic mass and X„=3T,/4(2rr)'i N,
XZe lnA=3(z/2)'i k, ]. Starting from the collisionless
Landau limit yL/kc, =(rrZI, /8m;)'i (identified by the
arrow on the right-hand side of the figure), we note that
introducing weak collisions has the effect of enhancing
the damping rate (by about 0.05% for kX„.=10 ). This
conclusion is in agreement with the results based on
Dum's [6] model (shown by the dashed curve a). Howev-

er, since he neglected compressional heating [third term
on the left-hand side of Eq. (2)] and the i emomen-tum
exchange rate [term R;, in Eq. (7)], his dispersion rela-
tion becomes co=kc, /J7'i, which is valid only for kX„

E . 4k'v'
'

~F.
ikvfii — —iruu;+ u; = —vi*f i . (3')

m, 15v2 Bv

This reduction has been accomplished by introducing an

effective collision frequency v~*(v, k, ro) =vt(v) [1 —iru/

vi(v)]Hi(v, k, rv), where the eff'ect of higher-order Legen-

dre modes has been embodied in the continued fraction

Ht(v, k, rv) =I+et+i/(I+ct+q/ ), with coefficients

ct =4k ) /[(41 —1)(i —1)(1—iro/vt)(1 —irolvt i)], —
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—icon;+ikA;u; =0,
—irvN;m;u; =ZN; )e ~E+ R;, ,

(6)

where R;, =(4rrm, /3) Jdv v vfi is the i emoment-um ex-

change rate, n; is the perturbed ion number density, and

and g—= v/v. (This method of incorporating higher-order

Legendre modes has also been successfully applied to the

study of thermal filamentation [11].) It can be shown

analytically that the continued fraction converges for all

finite kk, though a large number of terms is required as

kX increases. For the present analysis of low-frequency

waves, a very useful and accurate approximation is given

by Hi = [I+(n'kX/6) ]'i .

The linearized cold-ion continuity and mornenturn

equations are
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FIG. 1. Plots of damping rate of ion-acoustic waves y/kc, as
a function of kX„, where c, is the isothermal sound speed, k is

the perturbation wave number, and X,„ is the electron-ion mean

free path. The solid curve refers to the present FP results,
whereas dashed curves refer to models of (curve a) Dum, (b)
Kulsrud and Shen, (c) Bell, (d) collisionally reduced Landau

damping, and (e) fiuid equations. The arrow on the right-hand
side corresponds to the Landau damping rate yL/kc, . Circles
are obtained by adding curves c and d. Convergence required

up to 400 terms in H[ for the largest values of kk„.
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»1.
Kulsrud and Shen's [2] cold-ion damping rates are

displayed as dashed curve b in Fig. 1. Their results,
which imply a strong reduction in damping, followed by
eventual wave growth (y & 0), are typical of results based
on small I/kA, „. expansions about the collisionless limit.
Their physical explanation of undamping is that collisions
disrupt the wave-particle resonance that is responsible for
Landau damping. We find, however, that although col-
lisions inhibit Landau damping, collisional damping itself
prevails.

Let us first consider the damping arising solely from
collisions. We do this by solving the FP equation in the
diffusive limit, which involves truncating the Legendre
expansion [Eq. (1)] at I = 1 [or simply using H~ =1], and
neglecting the —irvf ~ term in Eq. (3). Such an approach
has been previously adopted by Bell [7], and gives rise to
damping rates shown by dashed curve c in Fig. 1. This
type of damping results predominantly from electrons
that diffuse across a distance k ' in a time tu '. The ve-

locity of these electrons can be estimated by setting
V -3!tI!in the denominator of Eq. (9), and is found to
be v -v, v, [9(zZm, /2m;) 'l /kX„] 'l .

To isolate the collisionless Landau damping mecha-
nism, which is dominated by electrons with velocities in

phase with the wave (i.e., v„-vp), one would set v=0.
In order to include collisional disruption of the wave-

particle interaction, we keep vi for all l ) 1 yet set vi =0.
(The latter requirement ensures that there is no damping
from thermal diffusion. ) The corresponding damping
rates, as shown by curve d in Fig. 1, fall below the col-
lisionless Landau limit.

We find that the total damping rate can be obtained by
adding the above "collisional damping" and "collisionally
reduced Landau damping" rates. This is shown (as cir-
cles) in Fig. I over the range 1 & k)j,„&10, where we
find agreement with the full FP result to better than three
significant figures. The reason for the successful superpo-
sition of both damping processes is that they originate

from distinct regions in electron velocity space. This is il-

lustrated by plotting contours in Figs. 2(a)-2(c) of the

imaginary part of f(v„,v~) (which is responsible for y)
as a function of v„and v~=(v —v„)'~ at kk„. =10 .
Figure 2(a) shows the result for "collisional damping"
only. The dashed curve identifies electrons traveling with

a velocity v =v, =0.07v&, which are the ones that can
diffuse a distance —k ' in a time co '. Since these
dominate the collisional damping process, Im(f) has its
maximum near v =v„with a peak in the direction of the
heat flow. Figure 2(b) depicts the distribution for the
"collisionally reduced" Landau damping mechanism,
with v~ =0. The electron distribution is now concentrated
along the dashed line, v„=vp, where the electrons are in

phase with the wave. However, unlike the classical col-
lisionless case, where Im(f) is independent of u~, we find

that Im(f) is small near the origin. This is due to strong
collisional disruption of the wave-particle resonance,
when the collision frequency v(v) tx 1/v becomes large.

By comparing with the collisionless result (not shown),
we also find a general broadening of the distribution
about v„=vp. When both damping processes are opera-
tive, as shown in Fig. 2(c), one can still clearly identify
the distinctive features of each.

Let us now consider the collisional regime, kX„& l.
The dashed curve e in Fig. 1 shows the classical damping
rate derived from the fluid equations, neglecting electron
viscosity [12]. As expected, when kA,„O fluid and ki-

netic results are in agreement. In the fluid limit, the
maximum y is found to occur when the ratio of the
thermal diffusion rate to the sound-transit rate is of order
unity, i.e., 2k xsH/3n, kc, -k) „(m;/Zm, )' —1, where

xsH is the SH thermal conductivity. When kX„(m;/
Zm, ) 'l ) 1, electron kinetic effects start to dominate
and fluid theory breaks down. Associated with this
breakdown is a reduction in the effective thermal conduc-
tivity x—= —q/ikTpp [where q =(2nm, /3) fdv v f~, and
Tpp=(4xm, /W, )fdv(v /3 —v v, )fo] relative to xsH, as
shown by the solid curve in Fig. 3. This heat flow inhibi-
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FIG. 2. Normalized contour plots of the perturbed distribution function Im(f) (in intervals of 0.2) as a function of u, and u~, for
(a) collisional damping, (b) collisionally reduced Landau damping, and (c) full damping (for kk„=10s).
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FIG. 3. Plot of ~tr/trsH~ as a function of kA.„, where tr and

ASH are the eAective and Spitzer-Harm thermal conductivities,
respectively. The solid curve refers to the present FP results,
whereas dashed curves refer to models of Bell (a) and Ham-
mett and Perkins (b).

tion, first pointed out by Bell [7] (dashed curve a in Fig.
3), is a consequence of the decoupling between the rela-
tively collisionless heat-carrying electrons and the bulk
thermal-electron population. In the kX„))1 limit our re-
sult agrees with the heat Aow coefficient obtained by
Hammett and Perkins [9] (dashed curve b in Fig. 3) for a
collisionless plasma.

In summary, we have developed a simplified form of
the FP equation that is valid for arbitrary e-i collisionali-

ty, through the introduction of a generalized collision fre-
quency v*(t, k, co). We have demonstrated that the
eA'ective damping of a sound wave can be treated as a
linear combination of a purely collisional damping and a

collisionally reduced Landau damping. In contrast to re-
sults in several published works, the introduction of ei-
collisions increases the damping above the collisionless
Landau value.
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