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The Heisenberg antiferromagnet, which arises from the large-U Hubbard model, is investigated on the

C60 molecule and other fullerenes. The connectivity of C60 leads to an exotic classical ground state with

nontrivial topology. %e argue that there is no phase transition in the Hubbard model as a function of
U/t, and thus the large-U solution is relevant for the physical case of intermediate coupling. The system

undergoes a first-order metamagnetic phase transition. %e also consider the S= —, case using perturba-

tion theory. Experimental tests are suggested.

PACS numbers: 75.10.Jm, 75.25.+z, 75.30.Kz

The Cso molecule (buckminsterfullerene) has carbon
atoms arranged like the vertices of a soccer ball [Il. We
consider a neutral molecule. The active orbitals are one
radial p orbital for each carbon atom. When the long-
range Coulomb or on-site Hubbard repulsion is large
compared with the nearest-neighbor hopping t, the mole-
cule has essentially one electron in each orbital. There is
an antiferromagnetic Heisenberg spin-spin interaction be-
tween nearest neighbors, caused by superexchange. The
exchange constant J t /6, where 6 is the energy dif-
ference between a state with one electron in each orbital,
and a state with two electrons in one orbital and none in a
neighboring orbital. Including on-site U and nearest-
neighbor V interactions, h, =U —V. The derivation is
similar to that of the t-J model used in connection with
the superconducting cuprates.

Estimates for real C60 are that U is approximately 9 eV
and t is 2 to 3 eV [2,3]. The real molecule is thus in the
intermediate U regime, and not in the large-U limit for
which we calculate. The C60 molecule is too large to nu-
merically solve for the intermediate U ground state.
There is evidence, however, that there is no phase transi-
tion for the Hubbard model in the C60 geometry as a
function of U/t. The spin correlations for intermediate
U/t are then expected to be qualitatively similar, but
smaller in magnitude, to those for large U/t. The evi-
dence for a lack of a phase transition is as follows: For a
finite quantum system at zero temperature, a phase tran-
sition as a function of the parameters occurs only if the
quantum numbers of the ground state change. The only
quantum numbers for this problem are spin 5 and angu-
lar momentum L (technically, what remains of L under
the symmetry group of the icosahedron). S=0 and L =0
in the limit U/t =0, and probably also in the limit
U/t ~ [4j. The simplest (and we believe correct) hy-
pothesis is that there is no phase transition as a function
of U/t It may be useful . in this regard to consider the
simple example of the two-site Hubbard model with two
electrons. Mean-field theory gives a phase transition with
sublattice magnetization developing at finite U/t, which
suggests that the large-U limit is not continuously con-
nected to the small-U limit. The trivial exact solution,
however, makes it clear that there is in fact no phase
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transition, that local moments develop continuously, and
that the spin correlations of the large-U limit develop
continuously as U increases.

All carbon atoms on the C60 molecule are equivalent,
but there are two slightly diff'erent bond lengths, 1.45 A
for the pentagon bonds and 1.40 A for the nonpentagon
bonds [51. The magnetic exchange constant for two

neighboring sites on the same pentagon is J~. The con-
stant connecting a site on one pentagon with a nearest
neighbor on another pentagon is J2. The Hamiltonian is

p np

0=J~ g O'J" crt, +J2 g a'J" crk,
(~,k) (~,a)

where the first sum is over the sixty pentagon bonds, and

the second over the thirty nonpentagon bonds. J~ is ex-
pected to be slightly larger than Ji, because the nonpen-

tagon bonds are shorter. We first treat the Hamiltonian
classically, so that cr is a classical unit vector. This is the
S ~ limit. (We consider the quantum S= —,

' case at
the end of the paper. ) The pentagons are frustrated, and

cannot achieve a classical energy of —J& per bond. The
ground state of an isolated pentagon (five spin system)
has all spins coplanar and an energy of Juncos(4+/5)

—0.80902J~ per bond. One immediately obtains a

lower bound for the energy of the entire ball, which is

Es 06Jctso(4 / tr)5—30J2, where we have used the fact
that nonpentagon bonds cannot have an energy lower

than —J2.
It would appear that the ground-state energy of Eq. (1)

cannot achieve the 1ower bound Eb, because in simple tri-
al states, connected pentagons interfere with each other
and increase the energy. The classical ground-state con-

figuration was found numerically by minimizing the ener-

gy over the spin variables [0;,p;[, i =1,60. See Fig. 1.
Surprisingly, the ground-state energy is equal to the
lo~er bound Eb. The spin configuration is, however, non-

trivial. The five spins in any given pentagon are coplanar,
but the spins in a neighboring pentagon lie in a different
plane. (A bond connects neighboring pentagons, but the

spins on either end of the bond are precisely antiparallel,
so that the spin planes need not be identical. ) The
ground-state configuration, which has zero net moment„ is

the same for all positive Jt and Jq. In addition to the oh-



YOLUME 69, NUMBER 1 P H YSICA L R EV I EW LETTERS 6 JULY 1992

(a)
12

FIG. 1. (a) The C60 molecule is flattened into a plane by
stretching the pentagon on the south pole. The spin directions
are not changed. The spins in the center (north) pentagon are
in the plane of the figure. A spin pointing up out of the plane of
the figure is foreshortened, with an enlarged head. A spin
pointing down into the plane has an enlarged tail. Nonpenta-
gon bonds are dotted. (b) Perspective view of the spin arrange-
ment on the ball.

vious global rotational symmetry of the ground state,
there is a discrete parity symmetry whereby each spin
CFg ~ CXg.

Since the spins in any given pentagon are coplanar, n
for a pentagon can be defined to be the normal to the spin
plane. Define a second vector I for the pentagon, which
is normal to the physical plane of the pentagon (a unit
vector pointing away from the center of the ball). For a
particular global spin rotation, the set of normals to the
spin planes for the twelve pentagons [nfj is a nontrivial
permutation of the set of physical normals [mjj. Let the
global spin rotation be such that for the pentagon on the
north pole, n~ mi. The pentagon on the north pole is

surrounded by a first ring of five nearest-neighbor penta-
gons, a second ring of five second nearest neighbors, and
one pentagon on the south pole. Any of the five penta-
gons in the first ring have an n equal to one of the I for a
pentagon in the second ring. Using the pentagon num-
bering convention of Fig. 1, n; =m~«), with (j(1),
j(2), . . . ,j(12))=(1,7,9, 11,8, 10,6,3,5,2,4, 12). The
solid angle subtended by the [njj for three pentagons that
are mutual nearest neighbors is 7 times larger than the
solid angle subtended by their [m~j. A topological Skyr-
mion number is the number of times one sphere covers
another sphere, much as a vortex number is the number
of times one circle covers another circle. The Skyrmion
number for the field n is 7, for both of the parity-related
ground states [6]. Given that the Hamiltonian is so sim-

ple, this exotic ground state arises because of the connec-
tivity of the C6u [7].

The classical antiferromagnet on Ci2 C20. C70, and C84

has also been solved numerically. The truncated tetra-
hedron Ci2 is a smaller system with properties similar to

C60 [8]. It has four triangles and four hexagons. The
classical lower bound for the truncated tetrahedron,
Es(' ) 12Jicos(2x/3) —6Jz is achieved by the ground

state, which has a Skyrmion number 1.
A large number of C„ fullerenes have been isolated [9).

These compounds are closed (have the topology of a

sphere), with twelve pentagons and a variable number of
hexagons ni, =(n/2) —10. The average frustration de-

creases as the number of hexagons increases. We have

calculated the classical ground state for the smallest mol-

ecule in this series, the dodecahedron C20, for the most

stable D5g, isomer of C70 and for the Td isomer of C84

[10]. The C20 molecule has not been synthesized, while

C70 and Cs4 are produced in carbon arcs.
The ground-state energy for the dodecahedron is

—22.360680J, which does not reach the bound Eb
30Jcos(4n/5) —24.270510J. The pentagons inter-

fere with each other, and prevent the system from reach-

ing Es( 0). The Skyrmion number of the ground state is 7.
Assuming that all C70 bonds have the same coupling J,
the ground-state energy of C7Q is —93.346473J, which

is slightly higher than the lower bound Eb = [60
xcos(4x/5) —45]J —93.541020J. The Skyrmion
number of the C7u ground state is undefined. There are
pentagons neighboring across the equator whose spin

plane normals are precisely antiparallel, resulting in an
undefined solid angle. Many (but not all) states that
differ infinitesimally from the ground state have Skyr-
mion number 7. The lowest-lying metastable config-
uration for C70 has a well-defined Skyrmion number 4.
The Tp isomer of C84 has the symmetry of a tetrahedron.
In contrast to the above systems, the ground-state
spin configuration for C84 has a lower symmetry than
that of the molecule. The ground-state energy is
—113.892689J, which does not reach the lower bound
Eb = —114.541020J. The ground state has Skyrmion
number 1, which interestingly is the same Skyrmion num-
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ber as the only other system investigated with Td syrnme-

try, the truncated tetrahedron Ci2.
We do not yet understand the C„problem well enough

to predict the result for a general n isomer without doing
the full calculation. The results on C20, C60, C70, and C84
are consistent with the hypotheses that (1) C6o is the
unique fullerene that reaches the energy lower bound,
and (2) the ground state has a nonzero Skyrmion number
when it can be defined.

We now calculate the response of C60 to a magnetic
field by adding a term —Iiz g;o; to the Hamiltonian.
There is a first-order metamagnetic transition, which is

surprising for an isotropic Heisenberg model. Usually
magnetic anisotropy, arising from the spin-orbit interac-
tion, is required for a metamagnetic transition. The sym-

metry of the ground state is different above and below the
transition. Below h„sites i and j that are diametrically
opposite each other have identical spins, cr; =cr~. Above

Ii, this symmetry is absent, but sites i and j that are

mapped into each other by a rotation of x about the axis
through the midpoint of one nonpentagon bond have spins
related by (o,', crf, o ) ( oj", —

cr~~, oj). —
In nonzero field, the spins in a given pentagon are not

coplanar. The pentagon spin plane normal n is general-
ized so that a variable I; j occupies each pentagon bond,
with n; z -o; x oj. The Skyrmion number can be calcu-
lated for the field n; j, and it is found that the Skyrmion
number is 7 both above and below the transition.

The above results are for the lowest energy state at a
given magnetic field. One can also obtain hysteresis loops

by following metastable states while slowly changing the
magnetic field, Fig. 2. A hysteresis loop can be compli-
cated because of the large number of local minima, but it
never encloses the origin.

We have also investigated the response of Ci2, C20, C7o,
and Cs4 to an external magnetic field. Of these, only C20
has a metamagnetic transition at which the magnetic mo-
ment is discontinuous. The other members of this group
have a transition at which the moment M is continuous,
but dM/dh is discontinuous. We do not understand this

diA'erence in behavior.
The above M(h) calculations for 8 =~ do not directly

apply to C60, which has S =
2 . Since S, is a good quan-

tum number for the S=
2 system, it cannot have a mag-

netization that is linear in h for small h as shown in Fig.
2. The closest it can come to Fig. 2 is to follow in a stair-
case fashion, with a series of first-order transitions at
which S increases from 0 to 1 to 2, etc. , with a larger h,S
jump at the metamagnetic transition. Since the transi-
tion from S =0 to 1 is at unobservably large fields (order
of J or 1000 T), the spin susceptibility vanishes. For
U))t, the orbital susceptibility falls as r5/U from the
five-membered rings. Since the physica1 U is not very
much larger than t, there is an orbital contribution to the
measured susceptibility. Elser and Haddon have estimat-
ed that the orbital contribution nearly vanishes for C60
with U=0 [11]. The effect of nonzero U is hard to esti-
mate for C60, but we note that for an isolated six-
membered ring the orbital susceptibility for U/t =4 is

0.49 that for U=O. The orbital and spin susceptibility
should thus be very small for C60, which is consistent with

measurements [12].
We now discuss the S =

2 wave function. For S = 2,
o in Eq. (1) is a 2X2 matrix. The simplest prescription
to make an S 2 trial wave function is to form a
coherent state ~yo) that is a product of spinors. The spi-
nor on each site j is quantized in the local +z~ direction
given by the classical spin direction. The expectation
(yo~ H ( yo) is equal to the classical energy, Two
modifications to this prescription are required. The first

is to add zero-point spin Auctuations, which lower the en-

ergy and result in a wave function ~y&l. The second is to
make the wave function the sum over coherent states rep-
resenting all of the classical ground states (including glo-
bal rotations and parity). This results in a trial state of
total spin S 0.

The spin Auctuation energy is estimated in leading-
(second-) order perturbation theory. This calculation
gives an extremely accurate energy for the square lattice
antiferromagnet [13]. The energy shift for C60 is

~ I jlHI yo&l

EJ'
(2)

—1 .5 —"i .0 —0.5 0.0

FIG. 2. Typical hysteresis loop, showing magnetic moment

M as a function of applied field h, beginning and ending at
h 0. The couplings are J~ 1 and J2 1.2.
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where each (j) has two adjacent spins flipped with respect
to (I(0). For J& =J2=1, the ground-state energy is shift-
ed to Eg Eo+AE 78.541 45 676 124.217.
The correction to the classical energy is somewhat larger
than that for the S= 2 Heisenberg model on a square
lattice. The reason is that in this case each site is only
threefold coordinated and the neighboring spins are not
all exactly antialigned, so that the energy denominators
are smaller. Another attractive variational trial state

( yi) is the product of singlets on each nonpentagon bond

[14]. This state has an energy E2= —90, which is con-

siderably higher than Ez. (The energy E2 can also be re-

duced by adding fluctuations perturbatively. ) We also
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calculated the moment reduction in second-order pertur-
bation theory on the coherent state. The local moment is

reduced from 1 to 0.5590. This moment is smaller than
that obtained for the square lattice [13].

Because of quantum fluctuations, a spin- 2 wave func-
tion does not have a unique Skyrmion number. The wave
functions (yu) and )y~) that we propose do, however, have
unusual, non vanishing spin-spin correlation functions
even for widely separated spins on the molecule. Some of
the correlation functions result from the fact that each
pentagon tends to have a unique normal, which may be
calculated from any of the five adjacent spin pairs in the
pentagon, cr; xcrJ. Other nonzero correlation functions
arise because the normals to diferent pentagons are re-
lated. We have calculated some correlation functions
from exact diagonalizations of the smaller model system,
the truncated tetrahedron. These calculations indicate
that both short- and long-range classical spin correlations
survive quantum fiuctuations [15]. In contrast, the pro-
posed local singlet state )y2) and the resonating-valence-
bond state [2] have only short-range antiferromagnetic
correlations.

Motivated in part by the cuprate superconductors,
there has been a large effort in calculating the properties
of extra holes or electrons in a planar antiferromagnet us-

ing t-J and H'-J models [16]. An electron-doped crystal
of Cap molecules is also a superconductor [17],and it may
be useful to do similar calculations in its more complicat-
ed spin field.

In conclusion, we have investigated the low-energy
magnetic properties of undoped C60, the related fullerenes

C20, C70, and C84, and the truncated tetrahedron C~2 in

the strong interaction limit. %e argue that there is no

phase transition in C60 as a function of Hubbard U, and
thus the spin-spin correlation functions at intermediate U
are expected to be similar but smaller than those for large
U. In the classical approximation, the connectivity of the
ball leads to an exotic magnetic ground state with non-

trivial topology even for the simplest antiferromagnetic
Heisenberg Hamiltonian. C60 is the only fullerene inves-

tigated that reaches the energy lower bound, meaning
that it has no frustration beyond that of an elementary
pentagon. The spin correlations in C~ may be measur-
able by inelastic neutron scattering, by magnetic x-ray
scattering, or by

' C NMR.
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