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Measurement of Spin Motions in a Storage Ring Outside the Stable Polarization Direction
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Polarized, stored beams are becoming a more and more important tool in nuclear and high-energy
physics. In order to measure the beam polarization in a storage ring the polarization vector of the stored
beam has to aim, revolution for revolution, over a period of seconds to minutes, into the same, so-called
"stable" direction. In this paper measurements at the Indiana University Cooler Ring are described in

which, for the first time in a storage ring, oscillations around this stable direction have been measured.
The existence and the dynamics of such oscillations are, for instance, important for a new proposed tech-
nique for polarizing stored hadron beams.

PACS numbers: 41.75.Fr, 29.20.Dh

The behavior of polarized beams was studied in both
electron-positron storage rings [1,2] and proton storage
rings [3]. The theoretical description of the polarization
in these storage rings is mainly based on a formalism in-

troduced by Derbenev and Kondratenko [4] and later by
Chao [5]. The basic concept is the following: All the tra-
jectories in a storage ring can be calculated relative to the
closed orbit, a (fictive) trajectory, which repeats itself
from one revolution to another. The behavior of the po-
larization can be calculated in a similar way. A polariza-
tion vector is found along this closed orbit which also re-
peats itself from one revolution to another. This vector is

called the n axis.
The thinking in terms of an ever-recurring polarization

direction is highly supported by the polarimetry used in

storage rings. In order to measure polarization with
sufficient accuracy, the measurements have to be per-
formed over several minutes. Even the most sophisticated
polarimeter [6] needs seconds to measure the polarization
to an accuracy of 1%.

In this paper the first measurements of the stability of
time-varying spin components are reported. The practi-
cal importance of an oscillating polarization is described
elsewhere [7,8]. The measurements were performed at
the Cooler Ring of the Indiana University Cyclotron Fa-
cility (IUCF) in Bloomington, Indiana. Recently a Si-
berian snake was installed in this ring for demonstration
purposes [3]. The snake consists of a solenoid which ro-
tates the polarization by 180 around the momentum axis
and skew quadrupoles. The skew quadrupoles are located
on each side of the solenoid. The authors of this paper
used this snake, the existing polarized source, and the ex-

where g is the proton g factor and y the Lorentz factor.
The numerical value of G is 1.7928. Equation (I) is a
direct consequence of the well-known Bargmann-Michel-
Telegdi (BMT) equation on the behavior of the spin S in

a magnetic field [10]:

dS e S x [(I +Gy) B~+ (I +G ) Bii]
dt ym

(2)

For the experiment an energy was chosen in which the
spin performs two revolutions during one revolution of the
beam: Gy=2. For a machine consisting only of bending
magnets the energy corresponding to Gy = 2 is 108.4
MeV. A more careful analysis [3,11] showed that the
solenoid of the cooler also contributes to the spin tune
and the correct energy for Gy =2 is 106.2 MeV. The
solenoid of the Siberian Snake rotates the spin around the
momentum axis by an angle of 180 . The required field
strength for a 180' rotation can be derived from Eq. (2).

The n axis of a machine with a Siberian Snake can be
derived from Fig. 1. Using the coordinate system defined
in this figure, the n axis is

n =(sin[@(s)],cos[tlr(s), 0]) . (3)
s is the path length of the trajectory and ilr(s) is the spin

isting polarimeter [9] to measure time-dependent spin
motions.

Particle and spin motion are related to each other.
When the particle is deflected by an angle a around a
certain axis its spin is rotated around this axis by an an-

gle Y:

2 (g 2)ya=Gya—=W,
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FIG. 1. The coordinate system. The IUCF cooler ring con-
sists of six bending sections and six straight sections. The
solenoid of the Siberian Snake is located together with the com-
pensation quadrupoles in one of the straight sections. A spin
manipulation system in the injector channel allows the injection
of the beam in any polarization direction. For the experiment a
polarization vector parallel to the vertical direction was chosen.

precession angle. The spin rotation only takes place in

the bending magnets. The expression y(s) describes the
nonuniform spin advance in the machine.

A beam polarized along the z axis is injected into the
storage ring. The beam is cooled by an electron beam
and stored for about 10 s. After this time, the beam is
directed towards the target of the polarimeter [9]. The
target is a 4.5-mm-thick graphite slab. The transverse
tail of the bunch is scattered. During the next revolutions
the center of the beam is brought gradually closer to the
target until the whole beam intercepts with the target
(Fig. 2). Afterwards a new beam is injected and the
measurement is repeated.

According to Eq. (3) the n axis of the ring with the
Snake is in the horizontal plane. The polarization of the
injected vertically polarized beam oscillates, therefore,
around the n axis:

Gating pulses

FIG. 2. The polarimeter. The beam is directed to a carbon
target and the asymmetry in the distribution of the scattered
particles is measured [9]. The polarimeter is gated in such a

way that data are taken every second revolution. The polarime-
ter can measure both the horizontal and the vertical polariza-
tion.

u =g sin [2xn+ 3 sin(2nru, r p+ 8) ] (6)

ergy deviations are small, these oscillations change the
measurement in two ways: (a) Gy is not for all particles 2

but 2+Gory(t). This time-dependent spin tune changes
Eq. (4) into a time-dependent equation with spin com-
ponents in all three directions. (b) The spin rotation in

the solenoid is no longer 180'. Particles with higher
(lower) energies than the nominal energy are rotated less
(more) than I 80' according to Eq. (2).

lt can be shown that eAect (b) changes the results of
the measurements significantly. Figure 3 tries to explain
why. As a result of the energy oscillations the spin devi-

ates from the vertical axis by

S=(OO, ( —l) ), (4)

where m is the number of revolutions. For a moment en-

ergy oscillations are neglected.
A standard polarimeter integrating over many revolu-

tions would find that the beam is unpolarized: In the
time average the vertical spin direction cancels. In order
to measure this time-varying polarization the polarimeter
has to be gated in such a way that data are taken only
every second revolution (Fig. 2). The gate is opened
every second revolution for half a revolution. If there is
no depolarization, the polarimeter should measure a verti-
cal polarization.

Synchrotron oscillations modify this result signifi-
cantly. Synchrotron oscillations are energy oscillations
around the nominal energy:

where co, is the synchrotron frequency. Although the en-

reduced degree
of polarization

FIG. 3. Schematic description of the eAect of synchrotron
oscillations on the result of the measurement. The spin rotation
angle in the solenoid depends on the energy of the particle. The
numbers describe the number of revolutions of the particle after
the measurement has started.
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