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The autoresonance in nonlinear three-wave interactions is discussed. The phenomenon is characteris-
tic of inhomogeneous (or time-dependent) media in the presence of nonlinear wave-vector (frequency)
shifts and leads to a persistent and efficient redistribution of the wave action fluxes (action densities) via

a continuing spatial (temporal) self-adjustment of the nonlinear resonance relation. Conditions for the

autoresonance are found and the phenomenon is illustrated by numerical examples.

PACS numbers: 03.40.Kf, 52.35.Mw

Nonlinear three-wave resonant interactions (3WRI)
are of great importance, since they describe the lowest or-
der (in terms of wave amplitudes) nonlinear effects in the
evolution of perturbations in many physical systems [1].
Historically, the theory of the 3WRI proceeded from
homogeneous and time-independent equilibria, through
the inclusion of a one-dimensional inhomogeneity [2,3]
and nonlinear frequency shifts [4], and, finally, to the
three-dimensional evolution of the interaction in uniform
[1] and one-dimensional [5] media.

A 3WRI process requires satisfaction of the resonance
relations cu~ =to2+to3 and k~ =k2+k3 for the frequencies
and wave vectors of the interacting waves. Therefore,
any factor afl'ecting these relations makes a large in-

fluence on the 3WRI. Inhomogeneity, for example, limits

the efl'ective spatial three-wave interaction range as the
wave vectors detune from the exact resonance relation. A
classical application of this phenomenon is the stabiliza-
tion of the explosive instability (one of the important
cases of the 3WRI) by an inhomogeneity [2]. Nonlinear
frequency shifts are also known to stabilize the explosive
instability [4] because of the dependence of the resonance
relations on the amplitudes of the waves. Our goal is to
consider the combined effect of inhomogeneity (or time
dependence) of the medium and nonlinearity of the wave

dispersions on the 3WRI. We shall see that the width of
the resonant interaction region in an inhomogeneous
medium can be significantly broadened or even become
infinite, with the addition of the nonlinearity, provided
the system enters the autaresonant interaction regime
(hereafter referred to as the 3WARI). The autoreso-
nance phenomenon was studied previously in the context
of accelerators [6], atomic physics [7], nonlinear dynam-
ics [81, and pairwise mode conversion [9], and this Letter
presents an extension of the idea to the 3WRI.

The starting point of our theory is the system of 3WRI
equations in a one-dimensional, weakly inhomogeneous
and slowly time-dependent medium,

L)(D()A)+i(D~+BD~)A~ = cA2Aex3(ip%'),

L2(D2)A2+i(D2+SD2)Ap = —c*A )A3 exp( —i 0), (1)

s~ dA l/dx+i6k ~ A l =p~c'A2A3 exp(i0),

s2dA2/dx+i8k2A2 = —p2c'*A lA3* exp( —i P),
s 3 aA 3/dx +ib'k 3 A 3

= —
p 3c'*A IA 2* exp( —i%')

(2)

where s; and p; are the signs of the group velocities
v; = —(t)D;/1)k;)/(|)D;/&to;) and action densities W;
= —(tJD;/rJto; ) l A; l of the three waves, respectively,

A =I'D;/ak; I'"A;, '= l(aD, /ek, )(aD,Irk, )(aD,/
t)k 3) l

', and the nonlinear wave vector shifts are
defined via 6k; =p;6D; l (t)D, /t)k, ) l

—'.
Now, for simplicity, let us further restrict the analysis

to the situation when s; & 0 (the three waves propagate in

the positive x direction) and introduce the absolute values
B; and complex phases p; of the wave amplitudes. Then
(2) yields the following system of real equations:

&&exp[Itt(x, t)] for which D;(k;, to;;x, t) are the real
linear local dispersion functions, bD; are the lowest-order
real nonlinear corrections to D;, k;=t)@;/|)x and co;
= —t)@;/i)t are the wave vectors and frequencies, c is the
complex wave coupling coeflicient, and + =+2+0 3

The operators L; in (1) are defined via

L, , (D, ) = - (eD, /a~, )(a/at )+ (aD;/ak;) (a/ax)
——,

' [d(BD, /r)to, )/dt —d (r)D, /r)k, )/dx] .

In the case c=bD; =0, Eqs. (1) describe three indepen
dent geometric-optics modes [10] and the solution of the
problem can be found by integrating along the rays for
which D; =0 serve as Hamiltonians. For a weak non-

linearity, we can still define to; and k; by the ray equa-
tions of the linear problem, i.e., set D; =0 in (1) for
nonzero c and 6D;.

At this stage, we reduce the complexity of the problem
and consider a stationary, but weakly x-dependent back-
ground case (a uniform, but time-dependent situation can
be treated similarly). Then A;=A;(x), tu;=const, and

D;(k;, to;;x) =0 is viewed as the equation for k;=k;(x).
We also assume that the wave frequencies satisfy the ex-
act resonance relation co] =m2+co3 and, therefore,
=+(x) and Eqs. (1) can be rewritten as

L3(D3)A3+i (D3+1JD3)A3 = —c*A ~A2 exp( —iO),
describing the evolution of the complex amplitudes 2;
(i =1,2, 3) of three interacting waves Z;(x, t) =A;(x, t)

dB;/dx =p rtB&Bt, sin@, i =1,2, 3, jakei,

d4&/dx = tr(x) —8k+ rlG cos@,
(3)
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where 4=%' —pl+pz+p3+0+zc/2, x'(x) =k2(x)
+k3(x) —kl(x), 8k =8k2+Sk3 —Skl, pi =pi, p2i—

pq 3, and G =p,'BpB„/8, +pi'iB, B„/Bii+p„'8 Bp/8„,
while g and 0 are the absolute value and complex phase
of c'. In order to close the system, we must relate the
nonlinear wave vector shift 8k to 8;. To the lowest order
[11],Bk =gp;8;, where the coefficients p; are constants
for simplicity. Finally, Eqs. (3) yield the Manley-Rowe
conditions p B; —

pj Bj M&j const.
The Manley-Rowe conditions allow us to express any

pair of the amplitudes 8; (say 8, and Bp) via the third
amplitude (denoted by B„below) and therefore (3)
defines a two-degrees-of-freedom problem for B„and 4:

dB„/dx = riF(8„)sin@,

d4/dx = ic(x ) —a„—h„B„+riG(8„)cos@,

(4)

(5)

where F=p„'B,Bii, a„=B,M, „/p,'+PpMp„/pp, and h~

=p,p„'/p, '+ppp„'/pii+p„. Equations (4) and (5) yield,
under certain conditions, the autoresonant regime in

which the nonlinear resonance relation

~(x) u(8„)-= ~(x) a„h„B-„'=-O (6)

is satisfied continuously, despite the spatial variation of
the wave-vector shift K. The departure in (6) from zero
is of an oscillating nature (see below) so that the exact
resonance relation is satisfied only in average.

Now let us find the conditions for the autoresonance.
One of the conditions is the smallness of the coupling pa-
rameter ri (the dimensionless smallness criterion will be

given below). We seek solutions for B„oscillating around
a slowly varying average 8~(x) and assume that the am-

plitude of these oscillations is small [of O(ri'i )]. We
also assume that Bg satisfies the exact nonlinear reso-
nance condition ic —a„—h„8~ =0 at the initial point of
integration and start our analysis from the case when all

8; are comparable (the important situation when 8„
« 8, p and rc —a„—h„8~&0 on the boundary will be dis-

cussed later). In this case the O(ri) term with cos4 in

(5) can be neglected yielding d4/dx =v(x) —a„—h„B„.
By differentiating this equation and using (4), we obtain

d'@/dx ' =dx/dx —Svp sin@, (7)

where S =p„'sgn(h„) and, to lowest order, vp =2riih„iB,p

&&BppB~. Equation (7) shows that 4 can be viewed as

the angle variable of an adiabatic nonlinear pendulum
under the action of normalized "torque" dK/dx. Then,
if dK/dx is sufficiently small and, initially, (d@/dx)
& 2vp2(i+Scos&), i.e., one starts on a trapped trajectory

in the (@,d&/dx) phase plane of the pendulum, the angle
N will perform nonlinear oscillations around the equilibri-
um point @0 which is near either 0 or z for S positive
or negative, respectively. In order to describe the
phenomenon in detail, we write the solution in the form
B„=B~+b„and @=Np+p, where, as stated, the oscil-
lating component b„ is of O(r)'i ). The smallness of p is

not required, but @0 is assumed to be near 0 or x depend-

l 750

ing on S. Then, by separating the slowly varying and

rapidly oscillating parts in (4) and (7), we have

dB~/dx = i1Fp sin@p(cosp),

dx/dx —Svp sin@p(cosy) =0,

db„/dx =SriFpsinp,

d p/dx = —
vp sing,

(9)

(1o)

idK/dxi « vp(cosy) . (13)

Finally, the substitution of the expression for sin@0 into
(8) yields d[x' —h„B~]//dx =0, proving the autoresonance
relation K(x) —a„—h„B~ =0 for the averaged quantities,
since this relation is satisfied at the boundary. In con-

clusion, when all B; are comparable, the sufficient au-
toresonance conditions are (a) starting in resonance at
the boundary and (b) satisfaction of (12) and (13).

Now we illustrate our theory by solving Eqs. (3) nu-

merically. Figure 1 shows the results of the calculations
for 4 (dashed line) and normalized wave action fluxes

N; =8;/Bi (xp) (solid lines), xp=o being the initial in-

tegration point. We assumed a linear dependence
K'(x) =cx (c )0) and used the dimensionless coordinate
s =xKc in Fig. 1, for convenience. The following set of
dimensionless parameters and initial values was employed
in the calculations: ri81(xp)/Jc =0.3, piBi (xp)/ c
=20, P28i (xp)/Jc = —10, P3=0, pl =pz=pi=l,
Nz(xp) =2, Ni(xp) =1.5, and @(xp) =0.2x. Note that
the exact resonance ic(s) —bk =0 is arranged at s =0.
We see in the figure that @ is trapped in almost all the
domain of the integration and oscillates, as expected,
around the equilibrium value &0=0. For trapped 4 in

Fig. l, %; oscillates around linearly varying values

N; p
= [lc(x) —a;]/h;8 12 (xp), (14)

where the h; (i =1,2, 3) difl'er by a factor ~ 1, as follows

from the Manley-Rowe conditions. We observe in the
figure that the frequency and the amplitude of the oscilla-
tions evolve adiabatically until, at s = 47, @escapes from
the trapped region and (N;) remain constant for s ) 47.
The reason for the exit from the autoresonance is that

where Fp=F(B~) and ( ) means averaging over the
fast oscillations. Equation (11) is the adiabatic pendu-

lum equation for the oscillating component p of the phase
mismatch. The knowledge of p allows us to find b„ from

Eq. (10). For example, Eq. (10) yields the condition

riFp/vpBg = (riB,pBiw/2 ibad iB~)
'

&& 1

guaranteeing the assumed relative smallness of b„. This
inequality can also be viewed as the desired dimensionless
criterion on the smallness of the coupling parameter g.
The solution of (11) can be employed to evaluate (cosp)
for the use in Eqs. (8) and (9) for the averaged quanti-
ties. For example, Eq. (9) yields sin@p=(dx/dx)v
&&(cosp) ' which, by recalling the assumption of 4p be-

ing near 0 or z, leads to the adiabaticity criterion
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FIG. 1. The spatial evolution of gtg (dashed line) and N;

(solid lines) for the resonance satisfied at the boundary.

one of the amplitudes (83) becomes small near the de-

trapping point violating (13).
The next important problem is associated with a more

general situation in inhomogeneous media, when the reso-
nance condition is not satisfied at the boundary, but, as
x(x) varies in space, x —a„h„By pas—ses through zero
at some internal point x,. Generally, in this case, one
does not enter the autoresonant regime since the trapping
of 4 must take place first. The trapping into the reso-
nance, however, is a nonadiabatic phenomenon and thus,
generally, is not characteristic of our slowly varying sys-
tem. Nevertheless, there exists an important case, allow-

ing the trapping despite the adiabaticity of the medium.
Indeed, when one of the amplitudes (say 8„) is suf-
ficiently small, the second equation in (3) becomes singu-
lar due to the division by 8„ in the term with cos4. Our
recent analysis [91 of this singular situation in the context
of the pairwise mode conversion showed that the trapping
in this case is guaranteed if, far from x„B„is sufficiently
small and sgn(dx/dx) sgn(h„) =sgn(p„'). The argu-
ments, similar to those of Ref. [9] with respect to the
trapping, are applicable to the 3WRI case and will not be
repeated here. The autoresonant interaction sets in after
the trapping and continues as long as (12) and (13) are
satisfied.

We shall conclude this Letter by discussing and illus-
trating the consequences of the autoresonance stage of
the three-wave interaction in the above-mentioned case
when the waves are not in the resonance at the boundary,
but one of the waves is only weakly excited. The depen-
dence of N~=(N„) on x for the initially weakly excited
wave has the siinple form (14) in the autoresonant phase

FIG. 2. The evolution of 4 (dashed line) and N; (solid lines)

in the bounded 3WARI case with the resonance condition
satisfied at the internal point.

of the interaction, i.e., for x) x„where x„satisfies
x(x, ) =a„. Equation (14) yields an increasing solution
for N~ when x & x, since sgn(dx/dx) =sgn(h„). The
average values of N, and Nit for the remaining two waves
can also be found from (14) or directly from the
Manley-Rowe conditions. Generally, the following two
qualitatively diH'erent situations can be encountered in

the process of the 3WARI in this case, depending on the
energy signs p; of the interacting waves. The first can be
referred to as the bounded 3WARI in which, due to the
Manley-Rowe conditions, at least one of the remaining
amplitudes decreases with the increase of 8„. When the
initially smallest decreasing amplitude (say 8,) reaches
the point where it becomes sufficiently small, the phase
detrapping takes place, and the interaction results in a
complete action flux exchange between modes a and y.
We illustrate the bounded 3WARI in Fig. 2, where the
notations are similar to those in Fig. 1. We assumed the
linear dependence x =cx (c & 0), started the integration
at s =so = —20, and used the following set of parame-
ters and initial values: IB i( pi)/st =0.3, piBi (sp)/Jc
=10, P28i (sp)/Jc = 5, P3=0, pi =pa=1, p3= —I,
N2(sp) =2, N3(sp) =0.005, and 4(sp) =0. The figure
shows the phase trapping and detrapping near the points
s = —9 and 31, respectively. The characteristic phase os-
cillations around @p(mod2x) =0 and the linear depen-
dence of (N;) in the autoresonance can be observed. It is

interesting to compare the results in Fig. 2 with those ob-
tained by neglecting the nonlinear wave-vector shifts.
This case is shown in Fig. 3 for the same example as in
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FIG. 3. The evolution of 4 (dashed line) and N; (solid lines)
when the nonlinear wave vector shifts are neglected. The pa-
rameters and initial values are the same as in Fig. 2, but all

~0

Fig. 2, but with P~ =P2=0. We see in the figure that the
trapping stage proceeds similarly to the nonzero-p; case,
but the detrapping takes place in the vicinity of the linear
resonance point (s =0), destroying the interaction much
earlier than in the 3WARI case (Fig. 2).

In contrast to the bounded 3WARI, the unbounded
3WARI case corresponds to the situation when, for grow-

ing B„(the weakly excited mode), the Manley-Rowe con-
ditions yield gro~ing solutions for both the remaining
waves. Such an example is shown in Fig. 4, where all the
parameters and initial data are as in Fig. 2, but p2 = —1.
After the trapping followed by the autoresonance in this

case, one never obtains singular denominators in the
second equation in (3) and the autoresonant spatial
growth of the amplitudes continues indefinitely. In a uni-

form medium this situation corresponds to the explosive
instability [4]. Inhomogeneity or nonlinearity separately
are known to stabilize the instability in this case. The
combination of both, however, may still result in an un-

bounded spatial growth of the wave amplitudes, but the
instability loses its explosive character (asymptotically
B; —~tc~

' ) and, thus, can be controlled by varying the
parameters of the medium. The eA'ect is similar to that
in a tapered free-electron laser which can be viewed as a
degenerate 3WRI with one of the waves (the undulator
field) prescribed externally. The tapering of the undula-

tor allows the nonlinear saturation of the laser signal to
be avoided [12] and improves the laser efficiency.

In summary, we have presented a one-dimensional
theory and examples of a new type of autoresonant
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FIG. 4. The unbounded 3WARI. The parameters and the
initial values are as those in Fig. 2, but p2= —l.

three-wave interactions. The phenomenon requires the
presence of the inhomogeneity (or time dependence) and

nonlinear wave vector (frequency) shifts in the system
and modifies, under specified conditions, both the charac-
ter and overall e%ciency of the interaction.
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