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Limit on the d/u Asymmetry of the Nucleon Sea from Drell-Yan Production
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We present an analysis of 800-GeV proton-induced Drell-Yan production data from isoscalar (1S)
targets H and C, and from W, which has a large neutron excess. The ratio of cross sections per nu-

cleon, R =ow/trts, is sensitive to the dilference between the d(x) and u(x) structure functions of the
proton. We find that R is close to unity in the range 0.04 ~ x ~ 0.27, allowing upper limits to be set on

the d-u asymmetry. Additionally, the shape of the dilferential cross section m3d~cr/dxrdnt for 2H at
xF = 0 shows no evidence of an asymmetric sea in the proton. We examine the implications of these
data for various models of the violation of the Gottfried sum rule in deep-inelastic lepton scattering.

PACS numbers: 13.85.Qk, 12.38.Qk, 24.85.+p, 25.40.Ve

Recent precise measurements by the New Muon Colla-
boration (NMC) fl] of the F2 structure function in
deep-inelastic muon scattering (DIS) from hydrogen and
deuterium targets show that

t 0.8
Go'(104 —= (F F2) =0.227 +' 0.007 + 0.014 .

& 0.004 X

When the integration is extended from zero to one the
theoretical result 60 =

3 is known as the Gottfried sum

rule (GSR) [2]. Assuming charge symmetry, its violation
implies d(x)~u(x) in the sea of the proton. The NMC
result has led to many analyses [3-10]of the nucleon sea.
For the purposes of the present paper we separate them
into three groups: (1) modified structure functions [3-5]
which reconcile the NMC data with the more convention-
al SU(2)-symmetric structure-function analyses by allow-

ing d(x)&u(x), (2) explicit calculation of the up-down
asymmetry in the sea arising from virtual mesons [5-9],
and (3) a structure-function analysis [10] which pre-
sumes an SU(2)-symmetric sea and utilizes the NMC
data to constrain the experimentally unobserved region x
~ 0.004.

It is well established that the proton-induced Drell-Yan

(N —Z) d(x) —u(x)Rg(x) —= =1+
crts(x) A d(x)+ u(x)

=1+ a( ) (2)

where 0 is the cross section per nucleon, IS stands for iso-
scalar, and iV, Z, and 2 refer to a heavy target with a
neutron excess. Unlike DIS studies of the GSR which

(DY) process in the Feynman-x range xF ~ O. l is sensi-

tive to the antiquark distribution of the target nucleons,
due to dominance of the term ub„ut„~,&. Under these
conditions proton bombardment of free proton and neu-

tron targets could be used to extract the ratio,

op„(x) u„(x) d~(x)

ott(x) u, (x) up(x)

A comparison of DY production from 'H and H is the
best approximation to this ideal. Comparison of nuclear
targets with diA'erent neutron excesses is less sensitive,
but still very relevant to the issue of asymmetry in the nu-

cleon antiquark sea. An approximation valid to ~0.02
for the range of the present experiment is
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FIG. I. The ratio Rw=ow/ots vs x$ s t. The open circles at
small x are the ratio before correction for shadowing as de-
scribed in the text. The curves are calculations described in the
text; Ellis and Stirling (dashed), Eichten, Hinchliffe, and Quigg
(dot-dashed), and Kumano and Londergan (solid).

determine an integral quantity, the DY process yields in-

formation about q(x).
The above equation presumes that effects due to next-

to-leading order quantum-chromodynamic corrections
cancel in the ratio. A recent analysis of the pion-induced
DY process aimed at extracting the ratio of sea-quark to
valence-quark distribution in the proton [11] demon-

strates that this approximation is valid at the few percent
level.

%e report here a new analysis from Fermilab Experi-
ment E772, a precision study of the 2 dependence of
dimuon production from 800-GeV proton bombardment
of nuclear targets [12-14]. We compare Drell-Yan pro-
duction data from isoscalar targets, H and C, to data
from W, which has a large neutron excess. From Eq. (2)
one has Rw(x) = I +0.1836,(x). The ratio shown in Fig.
1 was determined from sets of runs in which the three
targets were alternately inserted in the beam at intervals

of a few minutes. Relative normalization errors dominat-
ed by differences in rate dependence are less than 2%.
Table I gives the mean values of mass and xF correspond-

ing to each x bin.
It is now well established from DIS that nuclear sha-

dowing occurs in the range x~0. 1 when comparing
low-A and high-3 targets [15,16]. Evidence for shadow-

ing has also been reported in the DY process from the
present experiment [12]. Because W is significantly
heavier than H and C, the targets used to obtain ass, we

have corrected the two smallest-x points of Rw(x) for
shadowing by the following procedure. First, consistent
with the functional dependence observed in DIS [15,16]
an 3-dependent shadowing factor, a,h, was determined
from the isoscalar targets H, C, and Ca. Next, for
x ~ 0.1, the pure shadowing contribution to Rw was cal-

TABLE I. Mean values of kinematic variables at each x bin

of Fig. 1 as determined by the acceptance of the E772 spec-
trometer and the Drell-Yan cross section. The far right column
gives the upper limit of h(x) at the 2o statistical error level.

0.040
0.072
0.120
0.168
0.215
0.267

= 0.21

XF

0.370
0.295
0.155
0.115
0.152
0.162~ 0

Mass

4.94
6.24
7.32
8, 36

10.9
13.1

8, 15

auL(x)

0.19
0.27
0.22
0.77
=1
=1
0.4

culated using o~ =crNA"" Thi.s value was subtracted
from the experimental ratio to yield Rw plotted in Fig. 1

as solid points at small x above the open points (no sha-

dowing correction).
Also shown in Fig. 1 are calculated values of the DY

ratio using several published models of the GSR viola-

tion. The exact expression for the ratio is evaluated using

the full DY formula, not the approximation of Eq. (2).
The structure functions of Ellis and Stirling [3] (ES) and

of Eichten, Hinchliffe, and Quigg [5] (EHQ) have

d(x) Wu(x), the flavor asymmetry being determined from

the NMC data. The Kumano-Londergan [8] (KL) cal-
culation is based on virtual pion contributions which nat-
urally lead to Aavor asymmetry. It should be noted that
KL account for only 47% of the GSR violation via sea-
quark contributions. All calculations were performed at
the mean kinematic values given in Table I, simulating
the acceptance of the E772 spectrometer. Structure-
function evolution with Q is small [17] in the range of
the present data and was not taken into account.

The ES and EHQ structure functions yield an asym-

metry which is entirely inconsistent with Rw in the range
x (0.15. The KL calculation exhibits a smaller asym-
metry in the sea and is consistent with the present data.
Similarly the parton distributions of Martin, Stirling, and
Roberts [10], where d(x) =u(x) is assumed, yield R —1

in agreement with the data (calculation not shown). One
can use Rw in conjunction with Eq. (2) to set upper lim-

its on h(x). These values (Table I), which include the
2% normalization error and an estimate of the calcula-
tional error from Eq. (2), are determined at the 2o sta-
tistical error level.

A diA'erent and complimentary sensitivity of the DY
process to the d/u asymmetry has been applied to earlier
data [3,18]. Here one uses the shape of the differential
cross section versus xF for a single target as evidence of
diff'erences between p-p and p-n DY production. The p-p
process is symmetric around xF =0 whereas the p-n pro-
cess is not, leading to an xF asymmetry even for isoscalar
targets. This allows the use of H, hence avoiding un-

foreseen nuclear eff'ects which could complicate the previ-
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FIG. 2. Differential cross section m'd o/dxF dm (GeV'nb)
for H. The curves are calculations with the ES structure func-
tions with (solid) and without (dashed) d/u asymmetry.

ous analysis. Figure 2 compares m d cr/dxFdm for the
H data at a mean mass of 8.15 GeV with two versions of

the ES structure functions, with and without the term
which gives the d/u asymmetry. The calculations were
normalized to the large-x data with a K factor of 1.45.
At xF=0 one is sensitive to the d/u asymmetry at
x =0.21. Again there is no evidence for the suppression
of the xF ~ 0 cross section predicted by the ES structure
functions with d&u. Based on the quality of the fits of
Fig. 2 an upper limit for the d/u asymmetry is given in

Table I.
In conclusion, from studies of the DY process we find

no indication of a large SU(2) asymmetry in the anti-
quark sea of the nucleon. Clearly more precise proton-
induced DY data are needed, particularly to explore the

region x ~ 0.15. Direct comparisons of hydrogen and

deuterium targets would maximize the sensitivity to d/u

and minimize possible complications due to nuclear
eAects.
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