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The electronic and elastic properties of large fullerene molecules are studied. The low-lying electronic
levels are described by the Dirac equations in (2+1) dimensions, and the intramolecular modes are given
by the theory of elasticity. Coupling between electrons and phonons can also be written in a simple way.
The quantum dynamics of the ions is modified by the appearance of nontrivial Berry’s phases. The qual-
itative features of fullerenes with elliptical and cylindrical geometries, and minimal surfaces with nega-

tive curvature are also studied.
PACS numbers: 75.10.Jm, 75.10.Lp, 75.30.Ds

Newly discovered large carbon molecules [1] have at-
tracted a great deal of attention because of their unusual
properties, the most widely studied being C¢o. Many oth-
er structures have been synthesized or proposed [2-6].
They share the fact that they resemble locally graphite
planes.

In the present work, we present a systematic approach
to quasi-two-dimensional sheets of carbon atoms with
threefold coordination and arbitrary geometry. We ex-
ploit the fact that the electronic and elastic properties of
a single graphite plane have simple descriptions in the
continuum limit: The electronic spectrum coincides with
that of the Dirac equation in (2+1) dimensions. The
elastic properties can be analyzed within the continuum
theory of elasticity [7]1. Thus, it seems reasonable to try a
similar approach for systems which closely resemble
curved graphite planes. While the resulting electronic
states and atomic vibrations are always an approximation
limited by finite-size effects, the scheme is general and
applies to any large fullerene molecule. We will illustrate
the utility of our method by using it to analyze the
electron-phonon coupling in the Cg molecule. The de-
generacies induced by the symmetries of this molecule
give rise to a number of interesting effects, like the ap-
pearance of a Berry phase when quantizing the lattice de-
grees of freedom. This approximation also gives interest-
ing insights into the nature of the frustration induced by
fivefold rings inserted in the honeycomb lattice. These
rings, which are required to close the Cgo sphere, intro-
duce fictitious monopole fields, when analyzed within a
continuum framework.

We assume that the electronic properties of fullerenes
are well described in terms of three o bonds per atom,
and one unpaired # state. In the neutral state, there is
one electron per m bond. This is the standard Debye-
Hiickel model used for graphite and many other unsat-
urated organic compounds. Only hopping between
nearest neighbors will be taken into account. The macro-
scopic elastic constants are mostly due to the stiffness of
the o bonds. The coupling between the ionic vibrations
and the = electrons takes place through the modulation in
the hopping terms induced by the motion of the lattice.
We take as typical parameters, t =2.5 eV for the n-rn
hopping, 81/8] =4.5 eV/A for the derivative of the hop-
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ping with respect to the interatomic distance, and the
bond stiffness is defined such that the top of the acoustic
band coincides with the observed frequency of the optical
phonon, wep=1600 cm ~'.

It is well known that the bands of a graphite plane,
linearized around the corners of the hexagonal Brillouin
zone reduce to the solutions of two independent Dirac
equations in 2+1 dimensions [8]. This is the region of
energies where the Fermi surface (more precisely, points)
lies at half filling.

The local lattice structure of the fullerenes synthesized
or proposed resembles closely that of graphite. Each
atom has threefold coordination, and most of the cage is
tiled by rings of six atoms. As we create new fullerenes
by inflating the old ones, we should recover the electronic
structure of graphite [1]. On the other hand, all the ful-
lerenes grown from the Cgo have twelve pentagons, placed
always at the same relative positions. The spinors acquire
a nontrivial phase when rotated around each of the penta-
gons which is a reflection of the fact that the intrinsic
curvature of the lattice is accumulated in the pentagon
sites. These transformation properties can be reproduced
by an effective magnetic monopole field of half-integer
charge. The complete description of the electronic struc-
ture leads to the study of the Dirac equation in the pres-
ence of a monopole field, on the geometry of the sphere.

The Dirac equation on the sphere with a magnetic
gauge field is [9] iy*V,y =€y, y* being two-dimensional
Dirac matrices satisfying {y*,y"} =2g*" and V,, being co-
variant derivatives including spin and gauge connections.
Taking the monopole field as 4p=0, 4,=1/2cos(6), the
resulting Dirac equation reads

P P i(1+1)cos(6) =R
ATyr=|i% sin(9) * 25sin(6) vimRevL
(n
1 i(1 —1)cos(6)
= |7 + =R ’
Ay = |ide+ sin(0) % 25in(0) vi €yt

where the unit of energy is 3ta/2R, t is the n-7 hopping
energy, a is the distance between neighboring carbon
atoms, and R is the radius of the sphere. The integer /
stands for twice the charge of the monopole.

Equation (1) can be solved by means of the operators
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J e'?dq+ie Sin(@) ¢ e ein(@) )
Jz=—ia,,
because the square of Eq. (1) can be written as
AtA=12—(2=1)/4. G)

Thus, the solutions of (1) can be expressed as eigenvalues
of a generalized angular momentum operator [10]. The
monopole, however, restricts the possible values of the an-
gular momentum, so that j= ||/| —1[/2. This result im-
plies that the multiplicity of the states at zero is equal to
l.

We now determine the value of / by analyzing the spec-
trum of graphite spheres of different sizes. The low ener-
gy levels of different inflated fullerenes are shown in Fig.
1.

The states closest to zero are two triplets, which tend to
become degenerate at zero energy as the molecule be-
comes larger. The next states converge towards two de-
generate quintuplets at positive and at negative energies.
This is the spectrum obtained from Eq. (1) when /| =3.
A detailed discussion of the reasons for this value of / will
be given elsewhere [10]. Here, we will take as a given
fact that |/| =3 is the best choice to adjust the spectra of
the fullerenes.

The observed doubling of the spectrum is due to the
fact that, for every solution with /=+|/|, there is anoth-
er one with opposite chirality and /= —|/|. In terms of
the original graphite planes, each of these solutions arises
from one of the two inequivalent Fermi points.

The differences between the continuum and the
discrete calculations are due to perturbations associated
to the discreteness of the lattice. We consider two such
effects to be the most relevant: (i) a spherically sym-
metric coupling between the two Dirac equations, which
splits each multiplet in two, and (ii) deviation from
spherical symmetry, which distorts the high j multiplets.
Also, even for flat graphite planes, the Dirac equation
ceases to be a good approximation at energies of order ¢,
so that only the lowest lying states can be well described
in Cgo. That suffices, however, to study the most relevant
electronic features of lightly doped systems, in which the
conduction band of the crystal is derived from the lowest
triplet. The eigenfunctions for this triplet are

Yy, = 3/4”COSZ(0/2)ei” V’?=07
v =V3/2xsin(6/2)cos(6/2), y1=0,
vy =3/4rsin%(6/2)e™, y,

(4)
=() s

The elastic energy can be expressed in terms of the
strain tensor,

-
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FIG. 1. Low-energy spectrum of different carbon spheres derived from the Ceo structure. Vertical axis: energies in units of r.
Horizontal axis: multiplicity of each state. Full dots are states which can be identified with solutions of the Dirac equation.
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and the Lamé coefficients, A and u. Because of the
simplified central force model which we use, u =0. After
some tedious, but straightforward, calculations, we obtain
the modes of longest wavelength:

u,=b, ug=u,=0 (breathing mode),

u, =b,sin(0)cos(¢), up= —b,cos(8)cos(¢),

us=+b,sin(y) ,
(6)
u =bysin(6)sin(¢), wue= —b,cos(8)sin(y),

uy=—b,cos(p) ,
ur=b,cos(6), ug=b,sin(0), u,=0.

Within our model, the frequency of the first mode (of
Ay symmetry) is © =wexav3/2/R, and the other three
modes are degenerate, building a F, triplet, with fre-
quency w=w0pta\/3_/R, where a is the C-C distance, and
R is the radius of the sphere. Taking a/R~0.3, we ob-
tain 500 and 700 cm ~!, respectively. These modes are
the ones of lowest energy which induce a significant

change in the local surface element, given by uge+ uy,.
Other low-energy modes have only shear components. As
discussed in the next section, coupling to the electrons
takes place through modifications in the surface area.
Thus, we expect that these modes are the most relevant to
the study of the electron-phonon coupling in Ceo. The
frequencies we obtain are in reasonable agreement with
more detailed calculations [11-13].

To lowest order in the atomic displacements, two types
of coupling to the electrons are allowed by symmetry: a
scalar-scalar interaction (uge+uys)yy, and a tensorial
coupling, u,,yy*8"y. However, doping only changes the
occupation of the lowest triplet, for which one of the spi-
nor components vanishes, as discussed before. Hence, the
only coupling that we need to analyze is the first one,
which describes the change that a local dilatation induces
in the electronic wave functions.

In addition to conventional electron-phonon coupling
effects, the degeneracy of the electronic states gives rise
to nontrivial Berry’s phases in the quantum dynamics of
the ions. For simplicity, let us consider the quantization
of the threefold degenerate vibrations given in Eq. (6).
Let us assume that a given deformation is labeled by b,
by, and b,, in terms of the amplitudes of each of these vi-
brations. If the C¢p molecule has an unpaired electron in
this triplet, it will tend to be in the combination of the
wave functions given in Eq. (4) of lowest energy. The po-
tential induced by the vibration on the electrons, when
projected onto the lowest-lying triplet reads

b, (b +iby)/N2
2
Hemm=2 03 b=ib)NZ 0 Gutib)NI|, ™
0 (b —iby)/N2 —b,

where we are using Eq. (3) to represent the electronic [
states.
The ground state of Eq. (7) is given by

|w) =1 {[1+cos(8)1e*,/25in(0),[1 —cos(6)]e ~#  (8)

in an obvious notation. The energy eigenvalue is ¢
=—(3a¥4RM)31/31(b2+b2+b}) "2 We can estimate
the relevance of this coupling by assuming that |b|?
~h/Mw, where M is the total mass of the molecule, and
o the frequency of the vibration. Using the values of the
parameters discussed in the introduction, we find ¢~0.08
eV, so that it is a significant effect.

Following Berry [14], the quantum dynamics of the &’s
include a gauge potential, defined as A,=(¥|id,|¥)
=cos(@). This potential defines a monopole of charge 1
at the point by =b, =b, =0. Its effect is to eliminate the
lowest-lying solution with zero angular momentum.

The continuum approximation used here can be ex-
tended to a variety of different geometries. We discuss
the ones already observed, or proposed.

(i) Elliptical fullerenes.— The above equations can be
reformulated in elliptical coordinates. However, it is
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more intuitive to analyze this shape in terms of its devia-
tion from the spherical symmetry discussed above. An el-
liptical deformation in which a principal axis differs from
the other two splits the triplet which builds up the con-
duction band of the fullerenes into a doublet and a sing-
let. If the resulting shape resembles a football, like in
Cy6, the doublet will be lower in energy. When the defor-
mation gives rise to a pancakelike object, the singlet will
be occupied first upon doping. In both cases, we expect a
reduction in the conduction bandwidth, so that crystals
made of these molecules, when doped, should be poorer
conductors than the spherical ones.

The existence of chirality, like in C76, does not change
the doublet mentioned earlier, but modifies the symmetry
of the wave functions. Each orbital in this doublet has a
finite angular momentum along the axis of the molecule,
j- =% 1. In the absence of chiral symmetry, each orbital
will accumulate charge at a given pole. Thus, if the mol-
ecules, when doped, acquire a finite angular momentum,
a charge dipole will also appear. This coupling between
the orbital motion and the charge distribution is unique
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to molecules without chiral symmetry, and may give rise
to novel and interesting effects.

(ii) A cylindrical shape reduces to periodic boundary
conditions for the Dirac equation.—If the number of
atoms around the surface is odd, the two sublattices of
the graphite structure are exchanged when going around
the cylinder. In this case, a fictitious solenoid needs to be
located at the center of the tube, to induce a rotation of
the spinors. The graphite bands split into a set of one-
dimensional bands, one for each allowed value of k,
=2rn. The lowest band gives rise to a finite density of
states at zero energy, N(er=0)—~a/Rt, in agreement
with detailed calculations [6]. The change in the vibra-
tion spectrum can be obtained in a similar way.

(iii) Surfaces with negative curvature.— These systems
build a three-dimensional periodic structure. The solu-
tions can be expressed in terms of Bloch functions, once
the Dirac equation in the unit cell is solved. It is more in-
tuitive, as in the case of the sphere, to consider the square
of the Dirac equation. In the absence of fictitious fields,
this equation reduces to Laplace’s equation on the curved
surface. We expect that the frustration effects induced
by the sevenfold rings will give rise to the existence of
gauge fields, which will be similar to that of monopoles
located at the nodes of the 3D lattice which defines the
overall structure. The charge of these monopoles will de-
pend on the type of frustration which generates the cur-
vature.

The solutions with lowest energy correspond to long-
wavelength modes of the modified Laplace’s equation.
These are band edges, embedded in a 3D Brillouin zone.
If the structure has cubic symmetry, the dispersion rela-
tion must be ef =constxt2a?(k2+k?2+k?), a being the
C-C distance. Distortions from cubic symmetry may give
rise to anisotropic “masses.” Note that the replacement
of the Dirac equation by its square is crucial to the argu-
ment. In that way, the relevant eigenstates are located at
band edges, which can be described by simple symmetry
arguments. By taking the square root of the previous ex-
pression, we obtain the solutions of the Dirac equations,
ex~1talk|. An effective three-dimensional Dirac equa-
tion will describe the low-energy electronic spectrum of
the model. We expect that this description will remain
valid until wave vectors |k| ~L ~!, where L is the lattice
constant of the 3D lattice. At energies greater than ta/L
a complicated structure of bands and gaps, determined by
the gauge field and the curvature, will appear. Below this
scale the density of states per atom near the Fermi level
will vary as N(e)~|e?|/t3. The system is a semimetal,
with vanishing density of states at the Fermi level.

In conclusion, we have shown how the electronic struc-
ture and long-wavelength vibrations of fullerene mole-
cules can be analyzed within a simple and unified frame-
work. The method that we have outlined is useful to gain

information about the states at the Fermi level, the vibra-
tions to which they are more strongly coupled, and the
nature of the coupling itself. The scheme is not specific
to a given molecule, and provides an easy way to study
trends within fullerene classes, and similarities between
molecules of different geometries.

From a theoretical point of view, we show unexpected
relations between the properties of the fullerenes and the
quantum mechanics of Dirac fermions in a curved
geometry. At a more practical level, we predict that car-
bon sheets with negative curvature will be semimetals,
with lower density of states at the Fermi level than
graphite, and we show that the size and symmetry of Cgo
give rise to nontrivial Berry’s phases.
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