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Kinks and Topology Change
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We show that if a change of spatial topology is mediated by a spacetime with an everywhere-

nonsingular metric of Lorentzian signature which admits a spinor structure, then the Kervaire semi-

characteristic of the boundary plus the kink number of the Lorentzian metric on the boundary must van-

ish modulo 2. The kink number is a measure of how many times the light cone tips over on the bound-

ary. It vanishes if the boundary is everywhere spacelike. This result gives a generalization of a previous

selection rule: The number of wormholes plus the number of kinks created during a topology change is

conserved modulo 2.

PACS numbers: 04.20.Cv, 02.40.+m

There has recently been a certain amount of discussion

of two closely related ideas [1-3]. Both are matters of
principle rather than practice. One is that sufficiently ad-
vanced civilizations might be able to change the topol-

ogy of space by attaching handles, sometimes called
wormholes, to spacetime. The other is that advanced
civilizations might use these wormholes to build time
machines. The issue is whether there is anything in the
laws of physics to forbid such happenings. If the laws of
physics which constrain all civilizations require an

everywhere-nonsingular Lorentzian metric gL and the ex-
istence of an SL(2,C) spinor structure, one can make
some general statements about topology-changing pro-
cesses, using only kinematical information, independent
of particular models or particular field equations. Some
statements have been known for a long time. For exam-

ple there certainly exist topology-changing Lorentzian
spacetime manifolds but they suA'er from the existence of
closed timelike curves or are not time orientable [4-7]. It
has also been known for some time that an arbitrary
Lorentzian spacetime need not admit SL(2,C) spinors
[8,9]. The link between these two facts has been until re-

cently only partially understood and perhaps not widely

appreciated. With the renewed interest in wormholes
(both the Lorentzian ones dealt with in this paper and the
Euclidean, or more strictly, Riemannian, ones which have
been invoked in attempts to solve the cosmological con-

stant problem [10]), it seems worthwhile reexamining
what connections there might be between causality and

topology. In particular in a recent paper [11] attention
was drawn to a selection rule governing changes of topol-

ogy in all theories in which the spacetime manifold M
has an everywhere-nonsingular Lorentz metric gL. In
[11] it was assumed that (i) M is compact, (ii) (M, gL) is
orientable and time orientable, and (iii) 8M is spacelike.

One of the purposes of the present Letter is to relax as-
sumption (iii) and consider boundaries 8M which are
partly spacelike and partly timelike. Each connected
component Z, of the boundary BM is a closed connected
orientable 3-manifold and we may associate with each
such Z, an integer-valued invariant, kink(Z„gL), which

measures, roughly speaking, how many times the light
cone of the metric gL tips over on Z, . This invariant,
originally introduced by Finkelstein and Misner [12,13],
is called the kink number of the boundary component Z, .
More precisely it may be defined as follows. Endow M
with an auxiliary Riemannian metric gg. Diagonalize the
Lorentz metric gL with respect to gtt at each point of M.
The eigenvector with negative eigenvalue defines a line
field (V, —V). If gL is time orientable the ~ 1 ambigui-
ty may be resolved and V normalized with respect to the
Riemannian metric g~ to give an everywhere-non-
vanishing unit vector field on M, i.e., a global section of
the sphere-bundle S(M) of unit 4-vectors over M. We
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may pull back the bundle S(M) to any connected com-
ponent of the boundary Z, to obtain a six-dimensional
bundle S(Z, ) with fiber, the 3-sphere. The bundle S(Z, )
has two global sections —that provided by the unit vector
field V and that provided by the unit inward pointing nor-
mal n to the boundary component Z, . As with V the nor-
mal n is normalized using the Riemannian metric gR.
These two sections are three-dimensional submanifolds of
the 6-manifold S(Z, ) and will intersect generically in a
certain number of isolated points p;. These points may be
assigned a sign, + 1, as follows: S(Z, ) is orientable, as
are the two global sections. If the orientation of S(Z, ) at
the point p; coincides with the product of the orientations
of the two global sections we assign the point p; the value
+1. We assign it the value —

1 otherwise. The kink
number, kink(Z„gL), is now defined to be the sum of the
number of points p; counted with regard to this sign.

Finkelstein and Misner [12] gave a diA'erent, but
equivalent, definition of the kink number. In the present
context, which is slightly different from theirs, it amounts
to finding a framing of a collared neighborhood of the
boundary component Z, of the form (n, e;) where [e;],
i =1,2, 3, is some framing of Z, (since Z, is three dimen-
sional such framings always exist). The components V'
of the vector field V,

V=V n+V'e;,

with

(yp) 2+ y I yi (2)

t+x (1
with boundary

(3)

define a map f:Z S, the unit 3-sphere, and the kink

number is defined to be the degree of this map. We may

count the degrees by looking at the number of inverse im-

ages of a point q E S . Choosing for q the point (1,0) we

see that the definition given by Finkelstein and Misner

and that given above agree. Moreover the kink number is

thus seen to be independent of the choice of framing [e;].
Since the space of Riemannian metrics on M is topologi-

cally trivial it is also independent of the choice of auxili-

ary Riemannian metric gR and depends only on the

Lorentzian metric gL as our notation suggests.
We can extend the definition of kink number to any

closed connected orientable three-dimensional hypersur-

face Z lying in M, provided that Z is provided with a

direction for its unit normal n. The kink number,

kink(Z, gL), depends on this choice. Reversing the sign of
the normal reverses the sign of the kink number.

If the boundary component Z is everywhere spacelike
or everywhere timelike then the kink number vanishes.

An example of a boundary with nonvanishing kink num-

ber is obtained by considering a unit 4-ball B in flat

Minkowski spacetime. If (t,x) are a set of inertial coor-

dinates the ball is given by

t +x =1 (4)

Choosing V =rl/rlt one sees that the kink number is one.
The definition we have given above was suggested to us

by Graeme Segal. Now the following generalization of
Hopf's theorem about nonvanishing vector fields holds
[14]:

g(M) =kink(tiM, V), (5)

The boundary of M consists of the S satisfying (4) and
the S xS for which

(~xi —
—,
' )'+t'= —,

'

One readily checks that M has Euler characteristic
—1. The outer S has kink number + 1 and the inner
S'&S has kink number —2. Since M is a subset of
Minkowski spacetime it clearly admits SL(2,C) spinors.
Alternatively consider 8 xS with a spacelike boundary
of topology S'&&S described in [1]. Removing a small
4-ball creates another boundary component with topology
S and kink number —1. Thus a spacelike wormhole can
disappear leaving an antikink in a universe of topology
S 3

Further simple examples may be obtained by removing
from the unit 4-ball (3) n smaller, disjoint 4-balls. Each
of the (n —1) 3-spherical boundary components has kink
number —1. We could also remove small 4-balls from
the subset of Minkowski spacetime inside the S ' xS'

where the left-hand side of (5) is the sum of the kink
numbers for each component.

Combining Eq. (5) with the result, proved in [11],that
for M a spin-manifold

g(M) =dimz, [Hp(BM;Z2) SHi(rl~;Z2)] (mod2), (6)

we obtain the generalization of the original selection rule:
For any 4-manifold M admitting SL(2, C) spinor struc-
ture,

dimz, [Hp(BM;Z2)+ H i(8M;Z2)]

=kink(8M, gL) (mod2) . (7)

Thus, for example, if 8M=S uS'xS, where u
denotes disjoint union, the left-hand side of (7) equals l.
This may be interpreted as saying that one cannot create
a single wormhole in an S universe if both components
are spacelike. However, one may create a wormhole if
one creates a kink as well. It is the number of wormholes
plus the number of kinks that is conserved modulo 2 in

this more general situation.
A simple example, but where neither the S nor the

S' xS components is spacelike, is provided by consider-
ing points in flat Minkowski spacetime inside the unit 4-
ball given by Eq. (3) which are also outside an S x8
lying inside 8 and given by, say,

(~x~ —
—,
' )2+t2~ —,

'
.
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given by Eq. (9), that is, for which the inequality is re-
versed in (8). This subset gives a compact spacetime
with a wormhole boundary with kink number +2. The
topology is B XS which has Euler characteristic 2.
Each small ball removed gives an 5 boundary com-
ponent with kink number —

1 and the Euler characteris-
tic decreases by unity.

One possible application of the kink concept, suggested
to us by some remarks of John Barrett, might be to the
construction of a topological field theory for four-

dimensional Lorentzian spacetimes. A possible topologi-
cal action would be some multiple a of the Euler number

g of the spacetime. If one takes the state space associated
to each boundary component to be one-dimensional, the
amplitude to go from one connected 3-manifold Z; with

kink number k; to another connected 3-manifold Zy with

kink number kf would be, by Eq. (7), exp[ia(kf —k;)].
We shall not explore this idea further here but pass on to
considering the possible relation between kinks and

causality.
If a boundary component is entirely spacelike then the

kink number must vanish, though the converse is not

necessarily true. If the spacetime has just one boundary
component and if this boundary component is entirely

spacelike then there must exist closed timelike curves in

the interior. This is the celebrated result of Gerodt [7].
An example of this was provided in [1 ll with a manifold

topologically equivalent to S ' x 8 with a spacelike
boundary with wormhole topology S ' x S . One might be

tempted to conjecture that any compact spacetime with a
single boundary component with zero kink number must

contain closed timelike curves. However, this is not true
as is shown by the following example. Again we consider
a compact subset of flat Minkowski spacetime with
S' &&S boundary. This time we consider the interior of a
"solid torus, " i.e., the set of points obtained from a unit
3-ba11 lying in a spacelike hyperplane of constant time
and forming a solid revolution by rotating it in a timelike
2-plane along a circle of radius 4 say. If the initial 3-ball

is given by

t =0, xi+xz+(x3 —2) ~ I, (10)

Restricted to the initial hyperplane, Eq. (11) is satisfied

by two solid 3-balls, the original one given by Eq. (10)
and a second one, obtained by reflection in the x3 direc-
tion, which is halfway around the circle. The subset of
Minkowski spacetime defined by Eq. (11) has topology
5'XB with a boundary, corresponding to equality in Eq.

and we rotate in the x3 t2-plane, the-n the solid of revolu-

tion is obtained by replacing x3 by (x3+t )'l in Eq.
(10). Clearing of surds we obtain

(x +t +3) ~ 16(x +t )

(1 1), with topology S'XS . The flat Minkowski metric
has zero kink number on this boundary and yet clearly
there are no closed timelike curves.

Despite this last example one might have thought that
there was some relation between kink number and causal-
ity. Consider for example any spacetime with a single
boundary component topologically equivalent to the 3-
sphere, 5 . We have seen in the examples above, and it
follows quite generally, that removing small 4-balls
creates boundary components with kink number —I.
Moreover if the boundary is homotopically trivial it must

clearly also have kink number + l. One is therefore
tempted to conjecture that any compact spacetime M
with boundary S on which the kink number vanishes
must contain closed timelike curves. However, in some
recent unpublished work, done in response to an earlier
version of this paper, A. Chamblin and R. Penrose have
shown that for any boundary with any collection of kinks

on it there exists a spacetime without closed timelike
curves. Thus it seems that one cannot use the kink num-

ber as a diagnostic for closed timelike curves.
We would like to thank Roger Penrose and Graeme Se-

gal for helpful conversations, especially the latter for help
with Eq. (5). Andrew Chamblin has also obtained Eq.
(7) and a number of other related results. We thank him

for communicating these results to us.
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