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Diffusion, Dispersion, and Settling of Hard Spheres
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Using a multiple light scattering technique and a stabilizing counterflow (i.e., a fluidized bed), we
measured the average sedimentation velocity, its variance, and the short-time self-diffusion coefficient in
a concentrated hard-sphere suspension. Many-body hydrodynamic interactions slow both the Brownian
diffusion and mean sedimentation and provide a novel mechanism for long time dispersion.

PACS numbers: 82.70.Dd, 05.40.+j, 66.20.+d, 66.90.+r

When the particles in a suspension are denser than the
suspending solvent, their motions are controlled by sedi-
mentation as well as the customary diffusion due to sto-
chastic thermal fluctuations. As the particle concentra-
tion is increased, many-body hydrodynamic interactions
strongly modify the settling and diffusion. Both of these
processes are fundamental to a variety of natural and in-
dustrial systems. They also represent some of the most
difficult problems in statistical physics and hydrodynam-
ics.

In a concentrated hard-sphere colloidal suspension,
Brownian motion is altered not only by direct potential
interactions, but also by solvent mediated many-body hy-
drodynamic interactions [1-6]. The motion of any parti-
cle creates a disturbance flow in the surrounding solvent
which diffuses with a characteristic viscous time 7,
=R?p/n with R being the radius of the particle, p the
density of the solvent, and n the viscosity of the solvent.
On time sales less than or comparable to t,, the particle
motion is non-Brownian due to the transient development
of the flow field. At times sufficiently longer than 7, the
particles execute Brownian motion hindered by the in-
creased flow resistance due to neighboring particles.

Superposed on this Brownian motion is the sedimenta-
tion due to gravity. Here the hydrodynamic interactions
play a key role in determining the drag and hence the set-
tling velocity of each particle. A single sphere in a
solvent settles at the well-known Stokes velocity V)
=% R%(p'—p)g/n, where p' is the density of the sphere.
In a uniform concentrated suspension, the settling of the
particles induces a compensating backflow of solvent
which reduces the average sedimentation velocity because
the solvent has to flow through narrower channels con-
trolled by the interparticle spacing. At the same time,
each particle settles with a different velocity determined
by the particular configuration of its neighbors. For ex-
ample, two particles close together experience the down-
ward flow created by the other and, hence, both settle fas-
ter than if spatially separated. In addition, the pair will
drift horizontally if not oriented either horizontally or
vertically. Thus a given particle settles at roughly the
same speed until the configuration of its neighbors is
significantly changed. Recent computer simulations [7,8]
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and direct observations at low volume fraction in quies-
cent sedimentation experiments [9] show that the parti-
cles settle on the order of 100 interparticle distances be-
fore assuming a different speed. Therefore, in a concen-
trated colloidal suspension particles settle with a distribu-
tion of velocities, both vertically and horizontally, which
on long time scales causes the particles to drift apart ran-
domly at a rate much larger than that due to Brownian
motion. The calculation and measurement of the average
sedimentation velocity and its variance as a function of
volume fraction for the hard-sphere suspension is a fun-
damental test of our understanding of hydrodynamic in-
teractions.

In this Letter, we report our measurements on the hin-
dered mean sedimentation velocity and its variance for
concentrated hard-sphere colloidal suspensions. By em-
ploying a fluidized bed, in which the solvent is flowing up-
ward to counterbalance the sedimentation, we obtain a
uniform colloidal suspension that is distinguished from
other systems in that any transient disturbances due to
sample preparations are completely damped out and the
volume fraction of the system is conveniently varied by
changing the solvent flow rate. We have measured the
average sedimentation velocity as a function of the parti-
cle volume fraction unambiguously. By using a multiple
light scattering technique, we probe the motion of parti-
cles suspended in the fluidized bed and, therefore, directly
measure the variance of sedimentation velocity at short
times.

Our sample cell is made out of a rectangular glass
tube. A Vycor filter paper with a pore size of 20 nm dis-
tributes the inlet flow uniformly across the sample cell.
The suspension is contained in the straight portion of the
cell with cross section 2 mmx20 mm. The colloidal par-
ticles are polystyrene spheres 15.5+ 0.2 um in diameter
purchased commercially. In distilled water, these parti-
cles can be approximated as hard spheres. In our experi-
ments, we first put a known amount of the polystyrene
spheres in the fluidized bed. Water from the reservoir
flows through the filter (distributor) and uniformly up-
ward in the straight portion of the sample cell, fluidizing
the suspension. The concentration in the suspended col-
loidal column is very uniform, as indicated by laser
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transmission and particle dynamics measurements at
several vertical positions. The particle Reynolds number,
2RVop/n~10"4 is low, indicating that the solvent un-
dergoes creeping flow, i.e., that inertial effects are negligi-
ble.

To measure the average sedimentation velocity as a
function of the volume fraction, we only need to change
the height of the solvent reservoir, hence the flow rate of
the solvent, and after the steady state is reestablished
measure the height of the suspended column to determine
the volume fraction. Our results are plotted in Fig. 1.
We also plot data for the sedimentation velocity from
Ref. [10], which are in good agreement with ours.

Although the upward flow of the solvent counters the
mean settling velocity, the particles still move due to
thermal fluctuations and the variance in the settling ve-
locities caused by hydrodynamic interactions between the
particles. The thermal fluctuations lead to hindered
Brownian motion [1-6,11,12]. On the other hand, on
length scales less than the interparticle spacing, the vari-
ance in the settling velocity of an individual particle im-
plies a motion with constant speed (different from the
mean) and this leads to a relative displacement linear in
time.

We measure this relative displacement of the particles
using dynamic light scattering. Although the polystyrene
spheres in our experiments are fairly large, they still
strongly scatter light, and a typical fluidized colloidal sus-
pension in our experiments looks white and opaque. This,
in part, prevents us from studying the particle dynamics
using conventional single light scattering techniques.
However, we can employ diffusing wave spectroscopy
(DWS), the dynamic light scattering technique in the
strong scattering limit [13]. In DWS, appropriate
analysis of the temporal fluctuations of multiply scattered
light yields the particle dynamics. We employ the DWS
technique in transmission mode in a similar manner as
described previously [4,5]. A laser beam (Ao =488 nm)
was expanded and collimated to uniformly illuminate a
1-cm-diam spot on one side of the fluidized bed contain-
ing the uniformly suspended particles. Light emerging
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FIG. 1. A, measured sedimentation velocity as a function of
volume fraction. O, data from Ref. [10].
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from the other side of the fluidized bed was detected by a
photomultiplier, and the static intensity and temporal
correlation function were measured using a correlator.
By carefully choosing the sample thickness, we ensure
multiple scattering and study the particle motion on a
length scale that is a fraction of the interparticle spacing
(131

The detailed algorithm for DWS in transmission with
broad illumination has been worked out many times and
the electric field-field correlation function is given as [4,5]

(L/1*+ $)Vx
(1+ % x)sinh(LVx/1*) + 4 Jx cosh(LVx /1*)
(1)

where L is the thickness of the sample, /* is the transport
mean free path of the photons, and x =kg{Ar2(1))/
[S(g)] with kg being the wave vector, (Ar%(z)) the en-
semble averaged particle displacements, and [S(g)] a
q°-weighted average of the structure factor S(g) of the
colloidal suspension.

To calculate particle motion as a function of time from
the measured electric field-field correlation function, we
need to know [S(g)] and /*. Computer simulations show
that, although there is a small change, the structure fac-
tor S(g) for a sedimenting suspension is close to that for
a neutrally buoyant suspension at the same concentration
[7]. For polystyrene spheres 15.5 pum in diameter,
[S(g)]1~1 and we measure individual particle motions
[s1.

The transport mean free path /* in the case when
[S(g)1~1, is inversely proportional to the volume frac-
tion ¢ and can be extracted from the absolute transmitted
intensity [14]. In our experiments, we compare the
transmission with that of a standard cell, a suspension of
uniform polystyrene spheres (diameter of 0.412 um) at
¢=0.0087 in the same container to properly account for
reflections due to sample boundaries [15]. The transport
mean free path for the standard cell can be measured
with DWS, and, by comparison, we obtain /* for the
fluidized suspension [S]. We find that L//* for our sam-
ple ranges from 6.3 to 16.8 from the lowest to the highest
¢ in our experiments.

With the knowledge of /* and [S(g)], we can invert
the measured g;(z) to obtain particle displacements as a
function of time. To analyze the measured (Ar2(1)), we
note that the characteristic time 7,~61.3 us, which is
comparable to the time range over which the measured
g1(1) decays significantly. The particle motion due to
stochastic thermal fluctuations is therefore not simply
diffusive [11] and the Langevin equation must be used.
Because of the linearity of the Langevin equation, we can
separate the contributions to {Ar2(¢)) as follows:

g1(1)=

(Ar (1) =(Ar?),+6(AV) 22, )

where (AV) is an average of the variance in the sedimen-
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FIG. 2. Particle displacement {Ar?) as a function of time for
two volume fractions. The symbols are experimental data and
the solid line is the analytical solution calculated by Hinch in a
single-particle limit [11]. The time is scaled by 7, and the dis-
placement by 6D;1,.

tation velocity [16] that results from convective motion
and contributes to (Ar2(z)) quadratically in time at very
short time and length scales. The first term in Eq. (2),
(Ar?),, represents the mean-square displacements due to
the stochastic non-Brownian motion. In the single-
particle limit, Hinch obtained an analytical solution for
(Ar®, [11]. In a concentrated suspension, Zhu et al.
have recently shown that (Ar?), exhibits the same form
except that the single-particle Stokes diffusion coefficient,
Do=kT/6xnR, and the viscous time, 0=7,(¢p=0), are
replaced by concentration-dependent short-time self-
diffusion coefficient D; and viscous relaxation time 7,
[12]. Furthermore, in the concentration range they stud-
ied, Zhu et al. found that 7, is given by R %p/n(¢), where
n(¢) is the high-frequency, low-strain viscosity of the sus-
pension [12,17,18].

In Fig. 2 we show the measured mean-square displace-
ments (Ar?) at volume fractions ¢ =0.169 and 0.488. It
is noticeable that at the lower volume fraction (Ar?)
significantly deviates from the motion due to thermal
fluctuations, indicating the importance of the contribu-
tions due to the variance in settling velocities. We fitted
our measured {Ar?) by Eq. (2) by adjusting D;, 7,, and
(AV). In Fig. 3 we plot the values we obtained for D;/Dg
and 7,/t9 as well as 7,/ obtained by Zhu er al. [12].
Our experimentally determined D, agrees well with both
theoretical (low concentration) and experimental values
of the short-time self-diffusion coefficients reported in the
literature [1,4,5,19].

In Fig. 4 we plot our values of the variance in the sedi-
mentation velocity normalized by the Stokes velocity and
its value normalized by the mean settling velocity at the
given ¢. The variance is comparable to the mean sedi-
mentation velocity at lower volume fractions, but as ¢
increases, (AV) decreases faster than the mean. This
presumably reflects the fact that the crowded config-
urations at higher concentrations look more alike
throughout the sample.
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FIG. 3. A, measured D;/ Dy as a function of volume fraction,
where Do is the free diffusion coefficient. Solid line, D;/
Do=1—1.83¢. ® measured 7,/70 as a function of volume frac-
tion in this experiment. O, data taken from Ref. [12].

Shear flow also contributes a convective (z2) term to
{(Ar2(1)) which might interfere with our interpretation of
the variance [20]. However, for our maximum flow rate
of 3 um/sec and the sample geometry any such contribu-
tion is orders of magnitude below the 1% term we measure
from the variance.

In conclusion, we have studied particle dynamics in a
uniform hard-sphere fluidized suspension. The fluidiza-
tion provides a convenient way to control the particle con-
centration and allows transient effects to dissipate so that
steady state measurements can be made. We have mea-
sured the effects of hydrodynamic interactions on the
average sedimentation velocity and its variance, and the
thermally driven diffusive processes. The sedimentation
velocity variance is comparable to the mean but decreases
quickly as volume fraction is increased. The particle
motion which results from this variance is convective on a
short time scale but is diffusive or dispersive on a time
scale of several velocity changes or a distance scale of
many interparticle spacings. For our samples at ¢~0.2
this dispersion is 103 larger than thermal diffusion.
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FIG. 4. @, variance to the sedimentation velocity as a func-
tion of volume fraction. The bars are the error in the measure-
ments. Inset: The ratio of the variance to the mean sedimenta-
tion velocity.
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