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We show that the Chem-Simons theory coupled to complex scalars can be consistently quantized in

the Hamiltonian formalism without gauge constraints. A new structure of the anyon operator displaying
fractional spin and statistics follows logically from our analysis without any ad hoc assumptions.
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The explicit construction of anyon operators exhibiting
fractional spin and statistics in a canonical framework in

(2+1)-dimensional quantum field theory has remained
controversial and debatable. Work in this direction was
pioneered by Semenoff [1], whose construction involved

formal manipulations leading to some controversy and
criticisms [2-5]. Ideas [6] akin to Semenoff's [1] have
also been considered but subject to the same criticisms
[2-5]. Besides the usual criticisms we emphasize that
until now only gauge-fixed Hamiltonian methods have
been employed to discuss fractional spin and statistics of
gauge-dependent objects (the anyon operators). It is un-

certain, therefore, whether the observed effects are physi-
cal or mere gauge artifacts. Indeed sometimes different
results with different gauge fixing have been reported [7].

In this Letter we circumvent all these problems by
showing, for the first time, that the (2+1)-dimensional
Chem-Simons (CS) theory coupled to complex scalars
can be consistently quantized in the canonical formalism
without any gauge fixing. All the space-time symmetries
of the theory are preserved and the full Poincare algebra
holds.

Our analysis naturally leads to the construction of
gauge-independent multivalued operators which create
the physical states of the theory with arbitrary spin. %e
associate these operators with the anyon operators of the
model. The structure of the anyon operator is completely
new and, being gauge independent, the observed effects
are physical. The anyon operators obey graded commu-
tation relations which are compatible with the usual spin
statistics theorem valid for fermions and bosons. Finally
we show that the effect of the anyonic operators is to
eliminate the gauge interactions from the Hamiltonian.
Formal manipulations are avoided at all stages of the
computations.

The Lagrangian of our model is given by

(D„y) (D"y)+
2

e""A„B„Ag,
8

where

Dgg Bp+ /Ap,

with

s ' 1, g„„(+1,—1, —1).

It is invariant (up to a total divergence) under the gauge
transformations

I'0-IIO =0,

r, -11,—(e/4n2)e, ,a&=0,

and the symbol = stands for weak equality. The canoni-
cal Hamiltonian density is obtained from the Lagrangian
via the Legendre transformation,

e, - g II~.—Z
Z ~fields

-II'11—Wej, —(D, y)*(D'y) —,e"Ac&;A, ,

~here

J„-i[(D„y)'y y'(D„y)]—
is the conserved current.

The primary Hamiltonian is given by

(3)

Hp-J d2x(S, +UOII +U;P;),
where UO, U; are arbitrary multipliers. Conserving the
primary constraints with Hp and using the fundamental
Poisson brackets (PB),

[A„(x),II"(y)] =g„"bt (x —y),
[y(x),II(y)] - [y'(x), II'(y)] =b"'(x —y),

yields the secondary constraint,

S=I,+(el2n')a'Ja, ~, =0.
No further constraints are generated via this iterative

Ap(x )~Ap(x ) 8ptr(x ) .

The canonical momenta are

n'- . =0 rr, =8X BX 8
a~. ' ' a~' 4~' "

II= . (Dog), 11 = . D&y,
ez , , az

so that, according to Dirac's [8] classification, the pri-
mary constraints are
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procedure. We find that Po is first-class while P; and S are second-class constraints. It is, however, essential to extract
the maximal set of first-class constraints [9]. The following combination of the second-class constraints,

P =a'P, +S=a'n;+ J,+,s'~a, A, =O,
0 (4)

is first class. The maximal set of first-class constraints is thus given by Po and P while P; are second class. This com-
pletes our classification of constraints.

We next compute the Dirac brackets (DB) among the fundamental variables, generically denoted by X,

{X(x),X(y)]Da = {X(x),X(y)]pa — dz dz'{X(x),P; (z)]paPJ. (z,z') {Pl(z'),X(y )Ipa,
where

P;~ '(x,y) =(2x /e)s;ib(x —y)
The final expressions for the generators of space-time
translations may be written in a Lorentz covariant form,

{A (x) A (y)]na=
2

4n
0

{II;(x ),11 ' (y )]DB

is the inverse of the matrix of the PB's among P; and Pj.
The DB's which diA'er from their PB's are

00Tu —0u+ UourI0+ VouP

with

Up„= a„A p, Vp„=o
so that

(6)

2Z2
s;,b'(x —y), (5)

{A;(x),II, (y)]na= "b(x —y),

X~ +T aoX
, DB

calculated via the DB (5), are obtained. In the present

case it is simple to check that U and V are given by the

unique choice

U-a~, , v=o.
The same analysis is next repeated for the momentum

operator M; defined via the canonical energy-momentum
tensor

Mc 0ci Oi

where

a„v —zg„„ax
„a(a"v )

= (D„y)*(ag)+ (D„y)(a,y')
0+ +Q'ups 8yA ciagu y

4x

which are compatible with setting the second-class con-
straint P; [Eq. (2)l strongly zero.

The total Hamiltonian is given by

&T P, +UIIO+ VP,
where U, V are arbitrary multipliers reflecting the gauge
invariances in the theory associated with the first-class

constraints. It is possible to choose two gauge constraints
so that this arbitrariness is eliminated. This is the usual

course followed in the literature [1,6,7].
An alternative approach [10],however, is to determine

U and V so that the correct Heisenberg equations of
motion,

~»-q~o)
such that the creation operator p obeys

[Jo(x),j(y)l =b"'(x —y) j(y) . (7)

It is easy to show that, because of the nontrivial commu-
tator

[Jo(x),y(y)] =b"'(x —y)y(y)

following from the DB (5), a general structure for a
gauge-invariant p satisfying (7) may be written,

P(x) =exp dy Q(x —y)JO(y)+i dy;A;(y) p(x),

X~ aojl apX
, DS

It is simple to check that the constraints have vanishing
DB with fcoo so that they are fixed in time. In the quan-
tized version, therefore, eo„replaces Op„while the DB are
transformed into commutators following the usual pre-
scription i{,]oa [, ], and operator symmetrization is

implied whenever products of operators occur. The other
space-time generators (i.e., rotations and boosts) can be
treated in an identical fashion. It is found that the fields

transform normally and there are no anomalies. Finally
it can be shown that the Poincare algebra is satisfied on
the physical states, which are annihilated by the first-
class constraints. This completes our discussion of the
quantization of the model without gauge constraints.

Next we try to obtain the operators which create the
physical one-particle states of the model. The physical
states are gauge invariant, and we can be assured of this

property if the operators creating these states from the
vacuum are also gauge invariant. Moreover, following
usual convention [5] we define the one-particle states to
be those states which carry one unit of the charge Q=fd x Jo [Eq. (3)], i.e., states
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y; -(xp);+ (x —xp);t, 0 ~ i ~ 1.

For subsequent calculations we point out that

(io)

where Q is, as yet, an undetermined function and xp is

some reference point. The line integration in (9) is per-

formed along the straight path,

which follows from the symmetry properties of the com-

mutator (5) and the integration path (10).
In order to determine the function Q(x —y) in (9), we

first compute the general n-particle state functional,

dy;& dz. [A;(y), A (z)] =0
t

To simplify this, note that Eq. (8) implies, by the Baker-
Campbell-Hausdorff formula,

fO

exp ~ dy Q(x —y) Jp(y) p(z)exp — dy Q(x —y) Jp(y) =exp[Q(x —z)]p(z) .

Using this formula the n-particle state functional may be expressed as

n j-1 n n

lyn)-exp —g g Q(x —x ) exp g dyQ(x; —y)Jp(y) QP(x;)(0) ',
j~1/~1 i 1 i 1

where

(i2)

t x
y(x)-exp i dy A. (y) y(x)

Now the general form of the n-particle state functional following from the representation theory of the braid group is

given by
n j-1

ps [g(xi), . . . ,g(x„);i]=exp —2iS g g rp(x; —xi) @pe(xi), . . . ,g(x„);t],
j~li~1

(i3)

where it was shown by Forte and Joliceur [5] that for CS theory with matter coupling, the generalized spin factor S is a
function of the parameter 8, henceforth denoted by S(8). For the Klein-Gordon field S(8)= I/O. It may be observed,
however, that the explicit functional form of S(8) is immaterial for the ensuing analysis. yrp[g(xi), . . . ,g(x„);t] is an

n-particle state functional with Bose statistics and pi(x —y) is the multivalued polar angle of the vector x —y,
2 2

pi(x —y) arctan x' —y'
Going back to Eq. (12) we observe that the expression in the curly bracket represents a gauge-invariant functional with

commuting one-particle cocycles, because

dy Q (x —y)Jp(y), dy'Q (x' —y') Jp(y') =0,
and hence may be identified with yp (13). The correspondence between Eqs. (12) and (13) becomes complete if one
substitutes

Q(x; —x, ) -2iS(8)cp(x; —x,.) .

Hence the final expression for the one-particle creation operator (9) is

f'X

p(x) exp 2iS(8) dy pi(x —y)Jp(y)+i J dy;A;(y) P(x), (i4)

which is multivalued due to the presence of co(x —y).
This is our anyonic field operator since it creates states
(12) with arbitrary spin S=S(8) when acting on the
vacuum. As happens for the Klein-Gordon field we may
regard p as comprising creation operators of particles and
annihilation operators of antiparticles. This does not af-
fect our analysis since the n-particle functional (13) is
written for distinct positions x; only so that the vacuum
contributions [proportional to b(x; —xj), i&j] vanish.
Similarly one-antiparticle states are created by p (x).

The anyon operator (14) given here is different from
previous constructions [1,6,7], being manifestly gauge in-

t variant. It may be recalled that the usual anyon opera-
tors found in the literature [1,5,7], which are gauge
dependent, are obtained in the Hamiltonian formalism
with a specific gauge choice. It is not clear, therefore,
whether their anyonicity is a physical eftect or an artifact
of the gauge.

To study the statistics of p(x) (14) we compute the
product p(x)P(y) and exploit the formula (11) to obtain

j(x)j(y) =e —"~"'j(y)j(x),
since ro(x —y) —co(y —x) = +' x. The sign ambiguity in
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the phase arises because the function co is only defined
mod(2tr). Physically it reflects the arbitrariness present
in the exchange of two particles which may be done via
either a clockwise or an anticlockwise rotation. The
above equation reveals that the fields obey graded com-
mutation relations. For integral values of S(8) (corre-
sponding to bosons), commutators are obtained, while
half-integral values of S(8) (corresponding to fermions)
yield anticommutators. Thus the usual spin-statistics
theorem valid for bosons and fermions is reproduced.

One can similarly compute the algebra for the one-
antiparticle creation operator,

t (x)g t (y)e2lxs(8)y t(y)y t(x)

as well as for the particle-antiparticle case,

)~t( ) T 2iaS(8)~t(y )~(x )

There is a subtle aspect in the definition of the anyon
operator P (14). If the solution of the constraint (4) is

substituted in (14) then P(x) becomes single valued and

cannot represent an anyon operator. The paradox can be
resolved by recalling that the constraint (4) is first class
and, in our approach, is obeyed only weakly, in contrast
to the second-class constraint P; (2) which is strongly val-

id. Hence the constraint (4) cannot be directly substitut-
ed in (14).

To further understand the implications of the construc-
tion (14), we consider the interaction piece of the Hamil-
tonian and reexpress it in terms of the careted variables
(14). We obtain

(D;p) (D;p) r); exp —2iS(8) dy c0(x —y) Jn(y) p ii; exp —2iS(8) dy co(x —y) Jn(y)

We observe that the explicit dependence on the potential
has been eliminated by the use of the careted variables.

To conclude, we have shown that the CS theory cou-
pled to complex scalars can be systematically quantized
in the canonical formalism without gauge constraints.
All the space-time symmetries are preserved and the full
Poincare algebra is valid. Our analysis naturally leads to
the construction of multivalued anyonic operators which
create physical states with arbitrary spin. These opera-
tors satisfy graded cotnmutation relations which are com-
patible with the spin-statistics theorem. The anyonic
operators found here are completely new and improve

upon the previous constructions [1,6,7] since these opera-
tors are gauge independent and so the observed efl'ects

are physical. The earlier papers [1,2,6,7], however, em-

ploy specific gauge-fixing techniques to discuss anyonicity
of gauge-dependent objects. Consequently their interpre-
tation remains obscure. Moreover we have avoided the
usual formal manipulations, which have led to controver-
sies and criticisms [2-5], in obtaining the anyonic opera-
tors. The anyonic operators effectively eliminate the po-
tential from the Hamiltonian. The extension of our
analysis for fermionic matter couplings and the effects of
including a Maxwell term in the theory will be discussed
elsewhere.
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