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Symmetries and Canonical Transformations of the Hubbard Model
on Bipartite Lattices
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Recently an exact SU(2)SU(2) symmetry for the half-filled Hubbard model has been elucidated
but has not yet been properly incorporated in many analyses of this model. We compute the
irreducible representations of the symmetry group, a necessary step for any consistent mean-field
analysis. A proper mean-field theory valid for both negative- and positive-U Hubbard models is then
presented. A by-product of the description is a systematic enumeration of the Lie group SU(8) of
unitary canonical transformations that is a direct generalization of the SU(4) transformation in the
theory of superfiuid He and the SU(2) Bogoliubov transformation in BCS theory.

PACS numbers: 75.10.Jm, 64.60.Cn, 75.40.Cx

In spite of the fact that the Hubbard model has served
as a paradigm for strongly correlated electrons on a lat-
tice, only recently has it been appreciated that in addi-
tion to the ordinary SU(2) spin symmetry, there exists
an exact "hidden" SU(2) "pseudospin" symmetry at half
filling [1—3]. The existence of the hidden symmetry calls
into question the calculations that have been done in the
past on the Hubbard model, since the order parameters
that have been considered have not been shown to be
representations for the full symmetry group. This is a
minimal requirement for a self-consistent mean-field or
long-wavelength theory. De6ciencies in previous mean-
field theories are further suggested by the fact that these
calculations have been able to treat both the attractive
and repulsive Hubbard model at the same time.

We remedy this by providing a systematic analysis of
order parameters of the SU(2)SU(2) symmetry of the
Hubbard model at half filling and show that this group
forms a natural subgroup of an SU(4) symmetry of the
noninteracting theory. The classifications of the repre-
sentations of the full symmetry group are relevant for

any type of analysis of the half-filled Hubbard model. In
this paper we perform a mean-field analysis which can
be seen to be a natural extension of Hartree-Fock and
BCS theory. But here, since the action of the symmetry
group turns out to mix Hartree-Fock and "BCS"expec-
tation values, a self-consistent theory is possible only by
taking into account the possibility of nonzero expectation
values of atl quadratic forms of creation and annihilation
operators. A by-product of our description is a natural
extension of the theory of superfluid He to a system with
the possibility of three broken symmetries: electromag-
netic gauge, spin, and odd-even sublattice.

The Hubbard model at half filling is given by the
Hamiltonian [4]

H = Hp+ U) S(r)

where S(r) = P pct „cr /3c/3 and cr is the vector of

Pauli matrices. The Hamiltonian H// is given by the
usual tight-binding hopping Ho = t get „—c, , where
the summation is over spin o and grid points r and near-
est neighbors r' of an arbitrary dimensional cubic lattice.
The creation operator of an electron with spin 0 at site
r is labeled ct „.

The Hamiltonian Ho is diagonalized as Hp

ekc &c /, The .sum on k runs from —ir to zo t

for each ks, and the single particle energy is given by
2t P cos —ks, where ks denotes each component of

the vector k.
We define the vector Q = (ir, . . . , n) and the operators

/„. = ( T, &' 1,&) ( T/. " 1,/), when e/„. & 0,0

b/,
——(bT g, blk) = (cT,/, +q, cl/, ~q),t t t t t

so that in terms of these operators

(2)

Hp = ) e/ (a ~a /,
—b ~b g),t t

kn

where now the summation runs over the reduced Bril-
louin zone corresponding to e/, & 0.

The "Lich-Mattis" transformation Z acts on the po-
sition space creation and destruction operators ct

„

through the canonical transformation CI„~-1"cl„
ctT„~ctT„,where —1":—e'q ". Spin rotations and Z act
naturally on an 8-component multispinor of definite mo-
mentum: iI/k = (ak, b/„a &, b &). In momentum space
Z can be represented by the idempotent matrix whose
entries are all zero except Z~ ~

——Z3 3 —Z5 5 —Z7 7 ——

Zz s = Z4s = Zs 4 = Zs z = 1. The Lich-Mattis trans-
formation then becomes @I, ~ Z@I,. It is well known
that Z is an exact symmetry of Ho but changes the sign
of the Hubbard term U [2—5].

Spin rotations are defined using eight-dimensional rep-
resentations of the Dirac gamma matrices [6] in the "stan-
dard representation" where po is diagonal with entries
(1, 1, —1, —1).We define the seven 8 x 8 matrices P~ writ-
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ten in block form as

~, 0) q, olPo= 0, Pj =
0 .)l,'70

and Pj+3 —i,ZPoP~Z, all for 1 & Z & 3. The notation p*
denotes complex conjugate (not adjoint).

By explicit computation, it can be verified that these
seven matrices Pg obey PgPg+PgPB = 2ggB, where ggB
is the diagonal operator (1,—1, —1, —1, —1, —1, —1) times
the unit matrix. Thus P„defines an 8x8 Clifford algebra.
The matrix Po obeys the constraint Po = iPiP2P3P4P5Ps.

We define the commutators between the P matrices
M~ ~ = z [P~, Pg]. A series of corollaries now follow

directly from the general relation between SO(2n) and
SO(2n + 1) and Clifford algebras of 2" x 2" matrices [7].

Mg ~ defines the Lie algebra of SO(6,1) for 0 & A, B &

6. The restriction A, B g 0 generates the subalgebra of
SO(6) which is known to be isomorphic to SU(4). By
construction M, j for 1 & i,j & 3 generates the SU{2)
subalgebra of spin rotations. Since Po anticommutes with

P~ and it can be checked that Po commutes with Z we
find that ZMj j Z —Mi+3 j+3 so that M, +3j+s gener-
ates another SU(2) subalgebra defined by the SU(2)p
"pseudospin" symmetry that is known to be a symmetry
of the Hubbard model, and corresponds to conjugating
ordinary spin rotations with the Mattis-Lieb transforma-
tion Z. Since it anticommutes with all other P~, the
matrix Po is a scalar under the SO(6) defined by M~ ~
for A, BQO.

Since the Harniltonian Ho is simply given in terms of
Pp by Ho =

2 Qi egg i Pp@'g we see immediately that Ho
is in fact invariant under the entire group SO(6)=SU(4)
generated by Mg is.

To understand how this group is imbedded, we in-

vestigate a general canonical transformation of the form

4k ~ TI,@I, and 4 I, ~ T I,@ I, . We define the matrix

g — /3i/93P5 —(i 0) in 4 x 4 block form. Preservation of
the canonical anticommutation relations is then equiva-
lent to Ti,gT i, = g. Here the tilde indicates transpose. If
we also impose the restriction that Tg generate a unitary
transformation, we demand that g(T g) "g = T~ resulting
in Ti, (Ti, ) t = 1 which identifies Ti, as an element of U(8).
Demanding a global transformation results in the addi-
tional constraint Tt, = T for all values of k. In terms of
infinitesimal generators TI, = 1+GI, we then have three
conditions

gGt, g = —G k, canonical,

gGgg = (G A, )", unitary,

Gg = GVI„global .

The entire group of unitary canonical transformations
is therefore a copy of U(8) for each k in the "positive
reduced Brillouin zone, " defined here as the erst Bril-
louin zone modulo the operations k ~ k+ (7r, . . . , 7r) and
k ~ —k. This generates an SU(8) analog of the SU{2)
Bogoliubov transformation of BCS theory and the SU(4)

theory of He [8]; a doubling of the degrees of freedom
occurs for each nonconserved variable in the set of par-
ticle number, spin, and momentum (7t, . . . , ir). The sub-

group of global transformations is generated by all matri-
ces iso, Pg, and all commutators of these seven matrices
defines the Lie algebra of SO(7). Direct computation
shows that the group SO(6) previously identified is the
largest unitary subgroup that commutes with Po.

We have thus shown that the most general set of canon-
ical transformations that mix particles and holes, spin
and momentum (ir, . . . , ~) is given by the product of a
copy of SU(8) for each value of k in the positive reduced
Brillouin zone. Requiring commutability with Hp breaks
this down to SO(6)=SU(4) and finally requiring com-
mutability with the Hubbard model breaks this down to
global SU(2) SU(2). All these ernbeddings are generated
by Lie subalgebras created by commutators of subsets of
the Clifford algebra.

Mean-field theory is built on expectation values of the
form (cj zcpq) and (ct „c&~ ) but in order to construct
self-consistent mean-Geld theories of the Hubbard model
we must use irreducible representations that transform
properly under SU(2)SU(2), Z and if possible connects
to the SO(6) symmetry of the noninteracting theory. The
pseudospin symmetry mixes the Hartree, I'ock, and BCS
terms and all these must therefore be incorporated in the
representations. All this can be elegantly accomplished
by using the matrices P~.

We shall use the standard SU(4) notation of label-

ing representations by boldface numerals that coincide
with their dimensionality, and complex conjugate repre-
sentations by an asterisk. For SU(4) representations 1,
4, 6, 10, and 15, only 4 and 10 are inequivalent from
their complex conjugate. We first note that 4g forms
an eight-dimensional reducible representation of SU(4).
Since PD commutes with the generators Mg ii, the pro-
jection operator which decomposes the eight-dimensional
representation into two 4D representations 4 4' is pre-
cisely 1 + Po.

In order to understand how the group acts on operators
we next decompose tensor products such as 4t (34~ into
irreducible representations. These are given by [9] 4 I3
4* = 1 15 and 4 4 = 6 g 10. This then yields
the decomposition iIit 3 @q = (4 g 4*) C3 (4' 63 4)
2(1 g 15) g 2(6) (10 g 10*).

When SU(4) breaks down to SU(2)A@SU(2)p, these
representations branch [9] according to

4~ (Dk ISD~) .
6 (O' IED') @(D'g D'),
10 (D' g D') e (D' S D'),
15 ~ (D' g D') EB (D' C8 D') @ (D' I8 D'),

where D D" indicates the D" representation of SU(2) i
and D" indicates the spin p, representation of SU(2)s.
Here subscripts P and S denote "pseudospin" and "spin, "

respectively.
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Using this information, we see that when @„@qsplits
into irreducible representations of SU(2)psSU(2)s, we

induce a decomposition into 4(Do Do) g 4(D Do) 63

4(DO Cm Di) @4(D I8I D ).
The branching of the irreducible representations is

most easily described by associating a polynomial
of fermion operators with a matrix: Oy q(m)

(4.„),m, )(4q)~, where we have defined @„—= ktPo.
We further define the 8 x 8 SU(2)@SU(2) scalar matrix
I' by

(» oi1' = )PoPiPzPs =
I&0») '

where» indicates the ordinary pseudoscalar
i'70 7&'72'73.

The coefBcients linking the 8 x 8 matrices to each of
the invariant spaces that form representations of SU(4)
and of Z can then be neatly represented by products of
the beta matrices. We denote the four SU(2) pSU(2)s
scalars by T with the following superscripts: To = 1—Po,
To" = 1+p, , Ti = (1+p, )r, T" = -(1 —p.)r. To
make subsequent formulas simple we also need to define

0o ——0o = I', Oo = 0o = I', 0, = 0' = P„and 0, =
—0 = iP,+s. With all these definitions, the irreducible
representations can be written in the following natural
"4-vector" form

(T„)„q——O„q (T' 0"0„),
(T'„,)„q= Oy q (T' 0 0"),

where G & p, , v & 3.
We can now classify all possible bilinear order pa-

rameters according to their irreducible representations
of SU(4) and SU(2)sSU(2) p using the following linear
combinations whose relation to usual Fermi operators is
suggested by their symbols. Sum over repeated indices is
implied,

M„b» = (a~i„(o,)p b q),

N„"= (atq„t)bq),

Aybq" ——
(an't „(iozo„)bbt, ),

b,„"'"= (ab „()ago„)b~b~q),

and similar definitions for M„' ), etc. We have defined
oo to be the identity matrix.

The different representations of SU(4) can be natu-
rally organized into 4 x 4 form, where each column trans-
forms as a 4-vector under SU(2)s and each row trans-
forms as a 4-vector under SU(2) p, i.e., the zero compo-
nent transforms as a scalar, and the one-two-three com-

ponent like an ordinary vector under the respective rota-
tion group. Each irreducible representation of SU(4) is
contained in exactly one of the diagrams by combining
appropriate subblocks. The subblocks are easily identi-
fied by matching the dimensionality. We use the notation
(10) = Di Do, etc. ,

„—N„bb

+ Mbb, x
-q,-»», q

M' '" +M
+Mb z

p p)q

gab, O

q»'

gab, z
q)p

gab, z
q»

+ gamba,
O

q»

~ gamba,
z

q»

+ g+baiy
q s'

+ gamba,
z

q»'

gab, O

qp
gab, x

qu
)gab|y

q)p

gab, z
q)p

11)]„,,
gamba,

0
q»'

gamba,
z

q)p

g Aba)y
qp

gamba,
z

q)p

Naa + Nbb

—Mbbx
q) p p)q

M- ~ —Mb"»»»q
—Mb"

» s'q

(8)

((T„„)„)= [6]„[10]„[(01)g (10)]„g[(00) (11)]„ (10)

gaa, O + gebb, O

p q qp
gaaiz + g~bb, z.

p q qp
ga a+iyg~bb, y

p q q p

zaa+ gwbb, z
q q p

Nab + Nab ~a Oa+ gebb, O

»' q q»

Mab, x + Mab, x gaa, x + g*bb, x
uq q u» q q»

y + Maby ga ya+ ~abby
»q q u» q q»

M "+M" gaaiz + g+5b, z»qqu»qq»
The other two independent blocks T *

are obtained es-

sentially by taking the Hermitian conjugate of the forms
above. Phase factors are incorporated in our definition

of the representation so that under the transformation
Z each of the representations represented in this manner
transforms to its transpose: Z(T~ )y qZ = (T„„)yq.
Under the adjoint operation

[(T;,.)y, q]' = (T;,.)-q, -& = g(T„.)*g, —

[(T„,.)y,q]' = (T;,.)-q, -y = —g(T„.)*g,
(12)

(13)

where g is the tensor defined above Eq. (4).

Np, 'q+¹'q, p

Mab, x + Mab, x
»»q »

Mab, y + Mab, y
uq q u

M +M

A general mean-field theory consistent with transla-
tional invariance within a sublattice and SU(2)SU(2)
must obey (T„„,)yq

——0 unless p g q. We must then
consider the possibility of nonzero expectation values
of bilinears of the form ((T„)A,b). To simplify sub-
sequent formulas, we define the operators (T+ )„q
2 [(T„' )„q+ (Ti' )„q]and define the order parameters

T;,.=).((T;,.), ,) (14)
q

We then take all possible nonvanishing terms of this form
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in the Hubbard potential and find that after considerable
calculation the effective interaction is given by

U) .[To,.(To,.)..—T..(T..)..]

p

+[To,.(To,.)~,p
—T.,

o(T'.
,o)~,~] (»)

where repeated indices are summed over. Since T„ is
transposed under Z, we see that the interaction is indeed
odd under changing the sign of U, and the mean-field

theory behaves properly under SU(4), Z, and the entire
group SU(2) SU(2).

We identify T„oas the order parameters that mea-
sure spontaneously broken SU(2)s symmetry. The order

parameters that measure broken SU(2) p symmetry are
T0 „,. To understand these we convert T„„,to real space

and define Ao:—(c& „ct&„).We find that

To„——) [
—1"Red„,—1"Imk„,(n„—1)],

r

T„o= ) (M„*,M„",M„'),
r

To„,——) [Red„,Imh„, —1"(n„—1)],
r

T„',= ) (-1"M„, I"M&, --1"M„').

To work further with the mean-field theory, we can
fix a value in SU(2)gSU(2) p parameter space to deter-
mine the direction of spontaneously broken symmetry,
and thereby, without loss of generality, choose

to Neel order along the z axis. However, since the pseu-
dospin axis can be arbitrarily chosen, long-wavelength
excitations above the mean-field ground state of the half-
filled negative-U Hubbard model mixes charge-density
wave and the s-wave superconducting order parameter
[10]. This is the analog of the antiferromagnetic spin-
density waves in the repulsive Hubbard model. A con-
sequence of this analysis is that a mean-field calculation
that searches for 8-wave pairing in the U ( 0 Hubbard
model will find the same ground-state energy as a inean-
field analysis assuming only a charge-density wave. How-

ever, the full theory is necessary to understand the Gold-
stone modes that in the negative-U Hubbard model mix
8-wave pairing and charge-density waves.

To summarize, we have systematically enumerated the
representations of the important symmetries of noninter-
acting electrons on a lattice and shown how the repre-
sentations branch when the symmetry of the free theory
is broken by the Hubbard term. A tangible consequence
has been a careful validation of the standard mean-field
theory of the positive-U Hubbard model, and calculation
of the analogous Goldstone modes for negative U. We can
of course "quickly" derive these modes by transforming
each component of the Neel order parameter with the
Lieb-Mattis transformation [10], but the present analy-
sis shows that indeed no other nonzero order parameters
have been neglected in that argument.

The author would like to thank Martin Cederwall,
Bengt Nilsson, and Ulf Ottoson for useful conversations.

7 j
0 1 0,2 1,0 2,0 (17)

as an additional condition which resolves the ground-
state SU(2) s 8SU(2) p degeneracy.

We see that by restricting ourselves to Eq. (17) we
are permitting to be nonzero precisely those expecta-
tion values that transform as (he z component of spin
and pseudospin. Rotations about the pseudospin z is
the subgroup U(l) of electromagnetic gauge transforma-
tions. Our choice of SU(2) p parametrization and broken
symmetry axis selects exactly those ground states that
have definite particle number, and leads to the standard
"Hartree-Fock" results for the Hubbard model that de-
fine the z axis to be the axis of broken SU(2)s symmetry
(see for instance Ref. [4]).

Results from that analysis are unambiguous for a re-
pulsive Hubbard model with U ) 0. Making use of stan-
dard results we obtain a Neel ordered ground state, i.e. ,

all T„=0 except Ts o g 0.
Since we have constructed the order parameters to

transform simply under the Lieb-Mattis transformation,
we find a ground state for U ( 0 with all T„=0 ex-

cept T0 3, i.e. , a charge-density wave which is analogous
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