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Classical Hall Plateaus in Ballistic Microjunctions
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We demonstrate that nonlinear dynamics is able to elucidate many details of Hall experiments in

ballistic multiprobe conductors in semiconductor heterojunctions, if soft boundaries with a realistic
con6ning potential are assumed. This gives rise to two additional plateaus above the last Hall

plateau, which were observed experimentally, but had remained unexplained. We show that all
three plateaus are caused by trajectories leaving the junction in the forward direction and that the
generally accepted explanation of the last Hall plateau is invalid,

PACS numbers: 72.20.My, 05,45.+b, 73.40.Kp, 73.50.Jt

In recent years transport in semiconductor rnicrostruc-
tures has been investigated intensely and a variety of
magnetotransport anomalies were found [1—4]. Among
the phenomena observed in ballistic multiprobe conduc-
tors (cross junctions) in a two-dimensional (2D) electron
gas are a quenched or negative Hall resistance [5—10],
bend resistances [ll—13], and a feature known as the last
Hall plateau [5—8, 14, 15]. The physical origin of these
anomalies may be understood in the scattering approach
developed by I andauer [16] and Biittiker [17], which ex-
presses the resistances in terms of transmission proba-
bilities. As the size of the cross junctions is less than
the mean free path, transport is ballistic. Beenakker and
van Houten [14] simulated the transmission probabilities
in a hard-wall billiard model and showed that many ex-
perimental effects, e.g. , the last Hall plateau, can be re-

produced based on classical trajectories. This billiard
model, however, fails to reproduce additional plateau-
like anomalies [5, 18] that are observed in the magnetic
field range above the last Hall plateau and below the
fractional quantum Hall plateaus [19].

In the present Letter we demonstrate that the lat-
ter features [5, 18] have a classical origin and pertain to
classes of classical trajectories that cannot arise in ideal
(hard wall) billiards but require a soft confining poten-
tial. An appropriate choice for this potential gives rise to
two additional Hall plateaus besides exhibiting the last
Hall plateau and the quenching of the Hall resistance.
The plateaus are associated with the disappearance of
classes of trajectories leaving the junction in the forward
direction after a different number of loops. Furthermore,
we demonstrate that the so far generally accepted ex-
planation of the last Hall plateau must be revised. The
large number of trajectories guided around a corner of
the junction (see, e.g. , lowest inset in Fig. 3) are not re-

sponsible for the last Hall plateau. Instead it originates
from trajectories leaving the junction in the forward di-
rection. These results underline the relevance of non-
linear dynamics for ballistic transport in semiconductor
microstructures and illustrate the extent to which details

of transport experiments can be understood, if details of
the potential and of the dynamics are taken into account.

We have previously shown that a series of peaks ob-
served in the magnetoresistance of antidot superlattices
[20] can be explained by taking into account details of
the antidot potential [21]. In a cross junction sample,
the confining electrostatic potential for an electron has
a minimum at the center of the junction, as there the
distance to the confining walls is larger than in the nar-
row incoming leads. The exact shape of this potential is

not known, but, as will turn out, the occurrence of ad-
ditional plateaus is determined by qualitative properties
of the potential, i.e. , the existence or not of a potential
minimum. Under these aspects it is appropriate to qual-
itatively model this minimum and the smooth potential
walls by the function

V(x, y) = cosz+ cosy+ A cosxcosy+ A

with z, y C [0, 27r] (see Fig. 1, inset). A magnetic field B
is applied perpendicular to the x-y plane. The potential
minimum distinguishes our work from previous simula-

tions [4, 14], where potentials without a central well were

assumed. The main geometric features of this potential
can be adjusted by varying the Fermi energy FF and
A (—1 ( A ( 1) and are described by two parameters r
and f The ratio . r = r/W is the radius r of the corners
divided by the width R' of the leads at FF and the ratio

f = (2A —2)/EF is the depth of the potential minimum

(at x = y = ir) divided by EF. We mention that Eq. (1)
when extended as a periodic potential in the x-y plane
also describes lateral surface superlattices on semicon-
ductor heterojunctions where chaotic dynamics occurs in

the form of diffusion and anomalous diffusion [22, 23].
The current I, in lead i of a multiprobe conductor with

chemical potentials pz ——eV~ attached to leads j can be
expressed in terms of the transmission probabilities T,-~
across the junction from reservoir j to lead i by [17]

I, = —) T,sN~(U, —Vs), (2)
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where N~ is the number of modes in lead j and nor-
malization requires Q T,z

——P,. T,z ——1. In a fourfold
symmetric junction the Hall resistance RH = (V2 —V4)/I
for a current I = Ii from lead 1 to lead 3 (I3 = I) and-
zero current I3 = I4 = 0 in the voltage leads 2 and 4 is
then given by

RH =Ra (3)
Tzi + T4i + 2T3i(T21 + T3i + T4i)

with Ro = h/ezN and N = N~ in all leads. In the
semiclassical regime (N )) 1) the transmission probabil-
ities T,~ can be determined from classical dynamics of
electrons at the Fermi energy starting in lead l. Assum-

ing zero magnetic field in the leads, the electrons have a
uniform angular distribution, as they come from a reser-
voir in thermal equilibrium. Their contribution to the
current, however, is proportional to their velocity com-
ponent vII parallel to the lead [4] and thus we choose an
injection probability into the cross junction following an
angular and spatial distribution

p(y 0) ~ vl
I

= /2[EF —V(~ = 0, y))/rn cos 8 (4)

where I9 is the angle between v and the z axis. The
magnetic field can be scaled by Bc = mvF/eW, Ir, the
magnetic field where the cyclotron radius of a free elec-
tron with Fermi velocity v~ in the lead equals the ef-
fective width W, ir = jdyv(y)/v~ of the lead. For
comparison the scaled 2D free electron result is RH/Rp
= (2/7r)B/Bc where the number of modes N is given by
N = mv~W, ir/h7r.

0.0 0.5 1.0 1.5 2.0 2.5
B/Bo

FIG. 1. Hall resistance RH vs magnetic Beld for a smooth
model potential of a cross junction (inset with lead numbers)
with r" = 1/2 and f = —1/3 (curve a) showing the last Hall
plateau and two additional plateaus. For f = —1 (curve b) the
additional plateaus are shifted to higher values of RH and still
lie above the 2D Hall resistance of free electrons (dashed line).
The latter is approached asymptotically for higher magnetic
fields.

We have calculated the Hall resistance equation (3)
from transmission probabilities T,~ determined by nu-
merical simulations of classical trajectories injected into
the junction potential V(x, y) according to the distri-
bution p(y, 8) (Fig. 1). Studying two difFerent parame-
ter sets r, f we find that, besides the last Hall plateau
near B = Bo with RH/Ro = 1, there are two addi-
tional plateaus for B ) Bc. A similar sequence of Hall
plateaus was observed in experiments [5, 18] and has as
yet remained unexplained. In agreement with experi-
ment there is an enhancement of the Hall resistance in
this magnetic field range compared to the free electron
case and a dependence of the location of the additional
plateaus on geometry (Fig. 1). For small magnetic fields
the Hall resistance R~ is quenched or even negative. This
phenomenon is already well understood in ideal billiards
in terms of collimation and rebound trajectories [4, 9,
24—26].

%e can explain the occurrence of the three Hall
plateaus by analyzing the transmission probabilities T,~
in more detail. For magnetic fields B ) Bo the electrons
roughly skip along the corners of the junction in a clock-
wise sense and eventually leave the junction through the
kth possible lead with a probability PI, (k c IN). We
introduce these quantities PI, in order to distinguish es-
capes through a lead after different numbers of revolu-
tions along the corners. Thus Pi is the probability to re-
turn into the injecting lead without reflections, whereas
Ps is the probability to leave through the incoming lead
after skipping along all four corners of the junction. The
total transmission probability T,i from lead 1 to lead i is
given by the sum T;i ——P& 0 P4A, +, . As the probabilities
PI, decay rapidly with index k [27], a suitable normaliza-
tion helps to display more details We th. erefore consider
the conditional probabilities PI, = Pi, /Q, .

& P, that the
trajectory leaves the junction at the kth lead if the first
k —1 possible leads were avoided.

In Fig. 2 the magnetic field dependence of these prob-
abilities is compared with the calculated Hall resis-
tance. Pi and surprisingly Pq have no anomalies in
the magnetic field range of the three plateaus. Thus
the trajectories going directly from lead 1 to lead 2—although they do give the largest contribution to the
Hall conductanc" are not at all responsible for the Hall
plateaus. This is in clear contrast to the widespread opin-
ion on the origin of the last Hall plateau where this is
assumed. In fact, all three Hall plateaus set in at promi-
nent minima of P3, the conditional probability to leave
the junction through lead 3 after going along two corners
(see Fig. 2 insets). The minima of P3 can be understood
by the disappearance of different classes of trajectories
illustrated in the four insets in the top of Fig. 2. They
all leave the junction upon their first arrival at lead 3
after a di8'erent number of loops in the vicinity of lead
2. Dashed and solid lines for P3 correspond with tra-
jectories indicated by dashed and solid lines. Whenever
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FIG, 2. Conditional transmission probabilities P~, P2,
and P3 for exits through leads 1, 2, and 3, respectively, after
injection from lead 1 for r = 1/2 and f = —1/3. No anomalies
can be seen in P2, the conditional probability for direct exits
around a single corner of the junction. The prominent min-

ima in P3, however, correspond with the onset of the three
plateaus in the Hall resistance R// (dotted line). They are
caused by the extinction of the 6rst three classes of trajecto-
ries connecting lead 1 with lead 3, which are shown in the first
three insets on top where dashed and solid lines correspond
with the respective regimes of P3.
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FIG, 3. Partial Hall resistances R& for k =2, 3, and 5
(solid lines) calculated from all probabilities P, with i & k

compared with the full Hall resistance R// (dotted line) and
shifted vertically for clarity. R~ does not show any anomalies,
whereas in R~ the Hall plateaus appear corresponding with
the minima of Ps. Still longer trajectories (R//) only add
minor contributions to the fu11 Hall resistance. The insets on
the right illustrate some typical trajectories associated with
the partial Hall resistances.

the dominant class of trajectories ceases to exist with in-

creasing magnetic field a minimum appears in P3. The
three minima of P3 corresponding with the onset of the
three Hall plateaus are due to the vanishing of the first
three classes of trajectories in the insets of Fig. 2, re-

spectively. These trajectories with a varying number of
loops without escape near lead 2 are possible only due
to the existence of the potential minimum in the center
of the well. The increasing potential in the direction of
lead 2 causes the particle to return and to perform the
1oops shown in the insets of Fig. 2. For a flat potential
along the direction of the lead and considering the small

cyclotron radius, the particle would escape through lead
2. Thus the additional Hall plateaus can show up nei-

ther in hard-wall billiard models nor in smooth confining
potentials lacking a minimum.

To support the conclusion that the plateaus are mainly
caused by these trajectories we calculated partial Hall
resistances RI/, shown in Fig. 3 (solid lines), where all
trajectories leaving the junction through one of the first k

leads were included correctly, whereas longer trajectories
were included for completeness with an equal distribution
of exit through the four leads. In R~ no anomalies can be
seen, whereas R~ already anticipates most of the three
Hall plateaus in the full Hall resistance R// (shown by

the dotted lines). This substantiates the conclusion that
trajectories going from lead 1 to lead 3 are responsible
for the Hall plateaus. Still longer trajectories only add
minor contributions to B~, as can be seen from A~5.
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