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Hubbard Model in Infinite Dimensions: A Quantum Monte Carlo Study
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An essentially exact solution of the infinite-dimensional Hubbard model is made possible by a new
self-consistent Monte Carlo procedure. Near half filling antiferromagnetism and a pseudogap in the
single-particle density of states are found for sufficiently large values of the intrasite Coulomb interac-
tion. At half filling the antiferromagnetic transition temperature obtains its largest value when the in-

trasite Coulomb interaction U = 3.

PACS numbers: 75.10.Jm, 71.10.+x, 75.10.Lp, 75.30.Kz

The Hubbard model of strongly correlated electronic
systems has been an enduring problem in condensed
matter physics. It is believed to properly describe some
of the properties of transition-metal oxides, and possibly
high-temperature superconductors. Despite the simplici-
ty of the model, no exact solutions exist except in one di-
mension [1]. Recently, a new approach [2-4] based on a
dimensional expansion has been proposed to study such
strongly correlated lattice models. In this paper, I
present the first essentially exact numerical solution of
the Hubbard model in the infinite-dimensional limit.
This solution retains the physics expected in the low-
dimensional model, including antiferromagnetism (Figs.
3, 4, and 5) and the formation of a correlation induced
Mott-Hubbard gap in the single-particle density of states
(Fig. 6).

The Hamiltonian of interest is

H=—1t Y, (ClsCj o+ ClsCio)

(ij),o

+Z[e(n,~,1+n;,1)+U(n,-,1—%)(nu—;—)], 4))

where C;  (Cll,) creates (destroys) an electron of spin o
on site i, and ni,a=Ci'faCi,¢,. This Hamiltonian will be
studied in a hypercubic lattice dimension d in the limit as
d— . The limit is taken subject to the constraint
4dt?*=1, which yields a Gaussian unperturbed density of
states, p(w) =exp(— ?)/v/z [2,3]. This is the only non-
trivial way to take the limit, and is also appropriate for
studying the magnetic properties of the model since the
magnetic exchange J ~t2/U multiplied by the number of
neighbors is then kept fixed.
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FIG. 1. The first few diagrams for the lattice self-energy.

Here, the solid lines represent the undressed (U=0) electron
propagators GJ(iw,) and the dotted lines represent the intrasite
interaction U.

This limit greatly simplifies the problem. As shown in
[3,4], this limit reduces the problem to a local problem
since the nonlocal (intersite) dynamical interactions are
negligible in this limit. Thus, the irreducible self-energy
and irreducible vertex function are purely local, or site di-
agonal.

This fact may be seen from a diagrammatic argument
[5]. Consider the first few diagrams of the single-particle
self-energy for this problem as shown in Fig. 1. This is a
real-space representation, so each electron propagator Gj;
scales as ~th’_R’I. Thus the second-order term in Fig.
1 scales as YRRyl Consider the case where sites i and
j are nearest neighbors, then even after summing over the
contribution of a nearest-neighbor shell, the contribution
of the second-order diagram is dt3. This contribution
vanishes in the limit as d— o since dt? is kept fixed
when the limit is evaluated. A similar argument may be
applied to all terms, and only the site-diagonal self-
energy survives when the limit is evaluated. Further-
more, since the lattice is translationally invariant
%;j(iw,) =Z(iw,)8;; independent of i. Thus, the solution
of the single-particle properties reduces to solving
Gijliwn) =GJiw,) + Lk G liw,)E(i0n) Gy (iw,)  and
the diagrammatic equation for X in Fig. 1 self-con-
sistently.

With appropriate modifications, which I discuss below,
these equations may be solved exactly with a self-
consistent quantum Monte Carlo (QMC) scheme [6]. In
the QMC part of the technique I introduce a local
Green’s function & on site i. The single-particle diagrams
for § are illustrated in Fig. 2. Here, the undressed
Green’s function is the solution to the modified lattice

= = —a— 4 - + d p + ..
FIG. 2. The first few diagrams for ¢ (double solid line)
which is calculated in the QMC process. The undressed
Green’s function 99 is calculated from Eq. (2) and is represent-
ed here as a solid line, and the intrasite interaction U is repre-
sented as dotted lines.
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problem:
9% iw,) =G} (iw,)
=Giw,)+ Ek: G Gwy)Ziiw,)Ghiiw,), (2)
where
0, ifi=k,
Zkiwn) = {2‘. (iw,), otherwise. 3

The prime indicates that the self-energy is set to zero on
site i. This spatial dependence of Zj is necessary to avoid
overcounting of diagrams, since the Green’s function § is
calculated to all orders in U by the QMC process. The
diagrammatic equation shown in Fig. 2 is the same as
that needed to solve the Anderson impurity problem.
Thus, given €° I may solve for ¢ with the QMC algo-
rithm of Hirsch and Fye [7]. The Green’s function calcu-
lated in this process may then be inverted to yield a new
estimate for Z(iw,),

S(iw,) "' =8 w,) "' —=(w,) . 4)

Thus the QMC procedure and Egs. (2) and (4) constitute
a set of self-consistent equations for the lattice self-
energy X which essentially reduce the problem to a self-
consistently embedded Anderson impurity problem [8].

A variety of two-particle properties may also be calcu-
lated with this procedure [9], since, using similar argu-
ments applied to the self-energy, one may argue that the

J

B B B B —iwy(t,—1 —iw,(13— 14
Zii(iwn,iwm)=_TZJ; d‘tlj; d‘tzj; d1'3j; d14e m (1 ’)e e )(ch,',g(‘l'ft)cif,l(T3)C1,1(1‘2)CiT,1(T1))

and @ is the corresponding fully dressed single-particle
Green’s function.

Both ¢ and y;; are calculated in the QMC procedure.
Here the problem is cast into a discrete path formalism in
imaginary time, 7;, where 7;=IAt, At =p/L, and L is
the number of times slices. The values of L used ranged
from 40 to 160, with the largest values of L reserved for
the largest values of B since the time required by the al-
gorithm scales like L 3. No “sign problem” was observed
at any filling. At the start of the QMC process the initial
Green’s function (for which U=0 on the simulated site)
is taken to be §% The algorithm produces &, which is
used in Egs. (4) and (2) to produce another estimate for
¥ and 8° This process is continued until § =G;; within
the numerical precision of code. Usually five to eight
iterations are required for convergence. Other quantities
such as yu, u2={(ny—n,;)?), etc., are calculated on the
last iteration, once convergence is reached.

It is expected that the Hubbard model will exhibit anti-
ferromagnetism at half filling. This transition is signaled
by the divergence of the antiferromagnetic susceptibility
zaF calculated using the methods described above. Re-
sults from this approach are shown in Fig. 3 for U=1.5
and €=0.0. The logarithmic scaling behavior is shown in
the inset. Near T. the data fit a form yapoc|T—T,|"
with 7.=0.866 +0.0003 and v=—0.99*+0.05. This

irreducible vertex function is also local. For example, the
static magnetic susceptibility matrix

Xij (0n,iom) =13 (i0n) Spm + TZk 1% (0T i@y, i0p)
p,

(5)

where w, =(2n+1)xT. This is related to the static sus-
ceptibilities by

szj(iw,,,iw,,,) ,

xq=—7: Y e _"qk"x,-j(iw,,,iwm) . )
N n,m,i,j
The noninteracting part is
28Gw,) = % 3 Guliwn)Grrqlin) )

where Gy(iw,) =1/liw, — e — e —Z(iw,)]. Equation (7)
may readily be evaluated in the ferromagnetic [q
=(0,0,0,...)] and antiferromagnetic [q=(x,x,x,...)]
limits, in which it may be reexpressed as an integral over
the Gaussian density of states. The function I is the local
irreducible vertex function which may be calculated in
the QMC procedure by solving

i (0, i0m) =8 (i04) 28pm — T X 8 (i) T iy iw,)
p
(®)

Here y;; is the opposite-spin two-particle Green’s func-
tion,

X iiliwp,iom) .

)

scaling behavior is consistent with that of a Heisenberg
model on a lattice with an infinite number of nearest
neighbors, for which one expects the Curie-Weiss mean-
field form for yaF.
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FIG. 3. Antiferromagnetic susceptibility yar(7T) vs tempera-
ture 7 when U=1.5 and ¢=0.0. The logarithmic scaling be-
havior is shown in the inset. The data close to the transition
fit the form yarx|T—7T.|" with 7.=0.0866 +0.0003 and
v=—0.99 +0.05. The points at U=0 reflect exactly known
limits.
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FIG. 4. (a) Antiferromagnetic T, and (b) p?=((n1—n;)?
(calculated at T=T,) plotted vs U for the half-filled model
(¢=0). In each case, the error bars are smaller than the plot-
ting symbols.

The antiferromagnetic transition temperature 7, for
the half-filled model is plotted as a function of U in Fig.
4(a) [10]. For small values of U, where the local spin
moment is also small, I find that 7. is exponentially
small, consistent with perturbation theory [11]. For very
large values of U, where the spin moment has saturated
to its maximum value, one expects that the transition
temperature will fall monotonically with increasing U,
T.~1/U [11]. This is because the antiferromagnetic ex-
change dJ~dt?/U also decreases with increasing U.
Thus, one expects a peak in 7.(U) for some intermediate
value of U as seen in Fig. 4(a). In Fig. 4(b) the un-
screened squared moment p2={(ny —n;)?), calculated at
the transition T=T,, is plotted versus U when ¢=0. For
the half-filled model u? ranges from u2=0.5 in the un-
correlated limit (U=0) to u?=1 in the strongly correlat-
ed limit (U— o). Note that the peak in T.(U) occurs
near the point where u? begins to saturate to one. Away
from half filling, the divergence of the antiferromagnetic
susceptibility is quickly suppressed. This behavior when
B=16 is shown in Fig. 5 where the critical value of U is
plotted versus filling.

The infinite-dimensional Hubbard model also appears
to exhibit Mott-Hubbard behavior. This can be seen
in the single-particle density of states A(w)=—1/
7#ImG;; (@+i0™) of the half-filled model as shown in Fig.
6. Here A is plotted for several values of U when =7.2
and ¢=0. These results were produced by analytically
continuing the imaginary time Green’s function G;;(z)
with the maximum entropy procedure [12-14]. The un-
perturbed density of states p(w)=exp(—w?)/Vr was
taken as the default model in this procedure. As the
Hubbard U is increased from zero, the spectrum begins to
develop a pseudogap at zero frequency, whereas, away
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FIG. 5. Critical values of U, where yar diverges, vs filling for
fixed B=16. The result is symmetric around {n)=1.

from half filling (not shown) this pseudogap disappears
quickly. This feature is identified as a pseudogap, since,
although exponentially small, the @ =0 density of states
can never go completely to zero in this model [15].

The method described in this paper has reduced the
infinite-dimensional Hubbard model to a self-consistently
embedded Anderson impurity problem. Thus for large U
the qualitative features of the density of states have a
possible interpretation in terms of the Anderson model
spectrum. The upper and lower peaks correspond to
charge transfer on and off the local site being simulated.
The central peak may correspond to the Abrikosov-Suhl
resonance, which indicates the formation of a quasiparti-
cle which reduces the screened local moment on each lat-
tice site.

In addition to noting what behavior was observed in the
infinite-dimensional Hubbard model, it is worthwhile to
note what behavior was not. For all fillings, tempera-
tures, and correlations simulated, the ferromagnetic and
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FIG. 6. Density of states A(w)=— (1/7)Im[G;i(w+i0*)]
vs @ when €=0.0 and B=7.2 for various values of U. These re-
sults are for the paramagnetic state.
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s-wave superconducting susceptibilities did not diverge.

In conclusion, I have presented a self-consistent quan-
tum Monte Carlo procedure which allows one to simulate
strongly correlated systems in the limit of infinite dimen-
sions. I have shown that the model displays the expected
antiferromagnetism when half filled, and that the single-
particle density of states displays a correlation pseudogap.
The importance of this result is that it allows an essen-
tially exact solution of the d =co Hubbard model in the
thermodynamic limit. Thus, solutions now exist for the
model in two limits, d =1 [1] and d =oc. Finally, while
this method is discussed in the context of the Hubbard
model, it could be applied to other strongly correlated
models (i.e., the periodic Anderson model) just by chang-
ing the form of the undressed Green’s functions in Egs.
(2) and (5).
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