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ENects of m &Q Tip States in Scanning Tunneling Microscopy:
The Explanations of Corrugation Reversal
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(Received 22 3une 1992)

We analyze the effects of mAO tip states in scanning tunneling microscopy (STM). If near the Fermi
level, an m&0 tip state dominates, images with large but inverted atomic corrugation are expected. This
provides an explanation of the STM images with inverted corrugations, and the sudden reversal of the
STM corrugation from inverted to noninverted. An analysis of the eAects of various combinations of
m&0 and m =0 d-type tip states is presented. 4'e show that in most cases, a stable and large corruga-
tion enhancement, either positive or negative, is expected, with predicted values in agreement with exper-
imental observations.

PACS numbers: 61.16.Di, 61.50.Em

On the images of clean metal surfaces obtained by the
scanning tunneling microscope (STM), in many cases,
the sites of metal atoms are minima rather than maxima
[I]. This phenomenon, the inverted corrugation or the
negative images, has been the topic of a number of
theoretical studies [2,3]. In an extensive experimental
STM study of the Au(111) surface [4], some of the best
atom-resolved images are actually negative. The absolute
values of the corrugation amplitudes for the negative im-

ages can be a large fraction of an angstrom, an order of
magnitude greater than what is expected from the charge
density contour. It is also reported that with a sudden

change of the tip, under the same tunneling conditions,
the STM image switches abruptly from negative to posi-
tive. Such a spontaneous reversal of corrugation indi-

cates that it is a tip-state effect, not a sample-state effect
[4]. Furthermore, while the atomic corrugation is invert-

ed, the average contour of the large reconstruction re-

mains unchanged [4].
In a previous Letter [5], we show that with an 1=2,

m=0 (i.e., d, ~) tip state, the atomic corrugation of the
STM image of metal surfaces can be more than 1 order
of magnitude greater than the corrugation of the Fermi-
level local density of states (LDOS), which provides an

explanation of the experimentally observed atomic resolu-
tion on metal surfaces [6]. In this case, the image is posi-

tive, i.e. , the atomic sites appear as protrusions in the to-

pographic images [5,6]. In general, on various surfaces
of d-band metals, such as %, Pt, or Ir, the electronic
states with diferent m have comparable probability to
dominate the Fermi-level DOS. Slab calculations [7]
showed that on the W(OOI) surface, at the Fermi level, d
states with diAerent m occupy diAerent regions in the first
surface Brillouin zone. Although near the I point, the

d, ~ state dominates the Fermi-level LDOS [81, on irregu-
lar surfaces such as various STM tips, the m&0 states
have a sizable probability to dominate the Fermi-level
DOS. A cluster calculation [9] reached a similar con-
clusion. On the apex of a W4 cluster, the highest occu-
pied molecular orbital (HOMO) is a d, 2 state, whereas
the lowest unoccupied molecular orbital (LUMO) is an
m~0 state. On the other hand, on the apex of a %~ clus-

0.3 I I I I
I

I I 1 0.3 I I I
1

I I

(a) (b)

0.2—
4)
N

0.1—
O

0.2—

0.1—

0. I 0
(c)

0.0
5 -5

)0.10
i(a&

0.05

0.00-5 0
x-xo (A)

0.00
5 -5 0

x-xo (A)

FIG. l. LDOS of several tip electronic states, evaluated and
normalized on a plane zo=3 A from the nucleus of the apex
atom. An axial symmetry is assumed. (a) s state. (b) l=2,
m =0 state (d3, 2 2). (c) 1=2, m = 1 states (d„,and d~, ). (d)
/=2, m =2 states (d, . 2 and d,~).

ter, the HOMO is an m~0 state, whereas the LUMO is

a d, 2 state. Therefore, depending on the surrounding
atomic structure of the tip, either state can dominate the
Fermi-level LDOS. Here, we show that when an m&0
state dominates the tip LDOS near the Fermi level, the
STM image should exhibit a large but inverted atomic
corrugation; and hence a minor change in the tip struc-
ture may cause a corrugation reversal.

First, we present a qualitative explanation of the eAect
of m~0 tip states in the light of the reciprocity princip)e
[5]. The tunneling current is symmetric regarding the tip
state and the sample state. Figure 1 shows the LDOS of
various kinds of tip states at a plane z0=3 A from the
nucleus of the apex atom. The LDOS is normalized over
the plane. For simplicity, we assume that the tip has an
axial symmetry. !n other words, the two m =1 states, xz
;lnd Jz, are degenerate. Similarly, the two m=2 states,
x~ and x —v, are also degenerate. Following TersoA'
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TABLE I. %ave functions and tunneling matrix elements for d tip states. The tip is as-
sumed to have an axial symmetry, and the coefficients for the two m =1 states are the same.
Similarly, the coefficients for the two m =2 states are the same. For brevity, the common fac-
tor in the normalization constant of the spherical harmonics and a common factor 2xh /s'm, in

the expressions for the tunneling matrices are omitted.

Component

3Z I

XZ

yz
2

y
2

xy

Tip wave function

Doke(sr) [3cos 8 —l 1

D i k 2(»r )J3 sin 28 cosset

D1k2(xr) J3 sin28sintt
D2k2(rr) J3sinz8cos2&
D2k2(sr) csin 8sin2&

Tunneling matrix element

Do[3m- '8'/tlz' —1]y(ro)
D [243'.

'8'/a»azine(ro)

D i [2%3m '8 2/ey-az] y(ro)
D2[J3r '(a'/a»'- a'/ay )]y(ro)
D2[2J3s '8'/a»ay 1 y(ro)

and Hamann [10], we assume that the method of atomic
charge superposition is valid for describing the LDOS of
the gold surface. Each Au atom at the surface has only
s-wave states near the Fermi level. Then, according to
the s-wave tip theory of STM [10], the tunneling current
distribution between a single Au atom and the tip is the
tip-state LDOS, measured at the center of that Au atom.
For a d, ~ tip state [see Fig. 1(b)], it has a sharp peak cen-
tered at the atom site. The total current distribution is

the sum of tunneling current for all the Au atoms at the
surface. The sharpness of the tunneling current distribu-
tion for the d, 2 tip state, compared with that of the s-
wave tip state [Fig. 1(a)], again illustrates why the d, 2 tip
state enhances image corrugation [5]. The m=1 and
m =2 tip states exhibit a ring-shaped LDOS, as shown in

Figs. 1(c) and 1(d). According to the s-wave tip theory
of STM [10], the tunneling current distribution for a sin-

gle Au atom should be proportional to the tip LDOS,
which is ring shaped [Figs. 1(c) and 1(d)]. The total
current distribution is the sum of the tunneling current
for all the Au atoms at the surface. Therefore, with an
ma0 tip state, an inverted STM image should be expect-
ed. In other words, every site of Au atom at the surface
should appear as a depression rather than a protrusion in

the STM image.
In the following, we present a quantitative analysis of

the STM image corrugation by considering various com-
binations of d-type states. For clarity, we confine our dis-
cussions for the tips with an axial symmetry. We illus-
trate it with a hexagonal-close-packed metal surface, us-

I=4(DoBo( e "'+9(DoB ( e ' [3(x /x) —11 P

+ —", (DzBi( e ' (kl/ir) [I —
P (kx)].

The hexagonal cosine function p (kx) is defined as [5]

ing the method described previously [5,11]. The vacuum
tails of the five d states and the corresponding tunneling
matrix elements are listed in Table I. The degeneracy
due to axial symmetry of the tip is reflected in the choice
of coefficients. Those coefficients, Do, Di, and D2, depend
strongly on the specific structure of the tip, and can be
predicted by first-principles calculations [7-9]. The lead-

ing term of the surface Bloch wave near the I" point is

(see Fig. 2 in Ref. [5])

yo =Boexp( —trz),

where the decay constant ir is determined by the work
function p through the relation x = (2m, p) '/ /i't

=0.

sled&,

in A and eV. Bo is a constant, to be deter-
mined later. The leading Fourier components of the
Bloch waves at the six K points are [5] (see Fig. 2 in Ref.
[5])

2

yl =Btexp( —xlz) g exp(ikto, "x),
J~o

(2)

and its complex conjugate. Here, Go = (1,0), A i= ( —2, z J3), Q2 = ( —z, —
z J3) are unit vectors on

the (x,y) plane, k 1 =4m/3a is the magnitude of the Bloch
vector at the K points, and « =[ir +kl ] '/ is the corre-
sponding decay constant. Bi is another constant to be
determined later.

The general expression for the tunneling current can be
obtained using the explicit forms of tunneling matrix ele-
ments [11],listed in Table I. Up to a constant, the tun-

neling current is

(kx)+S4(D, B,('e '""(kt«/~')'[I —tt"'(kx)]

(3)

p
t l(X)—=—+—g cosmj" X,1 2

3 9 J--0
(4)

where tun=(0, 1), rui =(—
—,
' J3, ——,

' ), and mz=( —,
' J3, ——,

' ), respectively. The quantity k is the length of the primi-

tive reciprocal-lattice vector, k =4m/J3a, and x=(x,y) (see Fig. 2 in Ref. [5]). The function p (kx) has maximum
value 1 at each atomic site, and nearly zero between atoms which describes a positive corrugation. The function
1
—

p (kx) thus has a minimum 0 at each atomic site, and nearly 1 between atoms, which describes a negative corru-
gation. Both functions are displayed in Fig. 2 in gray-level form.

The first term in Eq. (3) represents the uncorrugated tunneling current, which decays much more slowly than the cor-
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where

»o=(9/2x)IBi/Bol'e "' " P"'(k» (6) effect of m =1 states in generating inverted corrugation is

much stronger than that of I=2 states. This is expected
froin Figs. 1(c) and 1(d). The m=1 states have a much

sharper rim than the m=2 states. Finally, there is a
small region in which an almost complete cancellation of
the positive enhancement and the negative enhancement
can occur, as indicated by the shaded area near zero cor-
rugation. In this case, the image is similar to the predic-
tion of the s-wave model. The observed image corruga-
tion in this case should be equal to or smaller than the
corrugation of the Fermi-level LDOS. From Eq. (7) or
Fig. 3, the available phase space is about 2.8% of the to-
tal phase space. Therefore, the probability is small.
Practically, when this situation occurs, an almost flat im-

age is observed. The experimentalist explains it as a bad
tip. A tip sharpening procedure is then conducted until a
large corrugation is observed, which is explained as hav-

ing a good tip [1,4,61.
The corrugation inversion due to mWO tip states is a

universal phenomenon in the STM imaging of low-

Miller-index metal surfaces. For most metals (except
several alkali and alkali earth metals, which have rarely
been imaged by STM), the nearest-neighbor atomic dis-
tance a=3 A. Consequently, the numerical coefficients
in Eq. (7) are very close to those for Au(111). On the
other hand, for profiles of reconstructions, the periodicity
a can be much larger than 3 A. For sufficiently large a,
Ki/x -- 1, and k 1/tc- 0. The STM images of such large
reconstructions approach the result of the s-wave tip-state
theory [10]. This limit case is demonstrated in the same
experiment: As the atomic corrugation depends dramati-

is the corrugation of the Fermi-level LDOS of the sam-

ple. The ratio IB|/Bol is determined by first-principles
calculations or independent experimental measurements,
such as helium-atom scattering.

I n the following, we present numerical results for
Au(111). Using the following parameters [4j, a =2.87
A, ki = 1.46 A ', x =0.96 A ', and xi = 1.74 A ', we

obtain

Az = [19.6 —11.4ID|/Dol 2 0IDi/Dol'i»o (7)

The enhancement factor E, i.e. , the quantity in the
square brackets of Eq. (7), is displayed in Fig. 3. Be-
cause the corrugation amplitude depends only on the rela-
tive intensities of diA'erent components, we normalize it

through

IDoI'+ID I'+ID I'=1 (8)

Naturally, the results can be represented by a diagram
similar to a three-component phase diagram, as shown in

Fig. 3. Several interesting features are worth noting.
First, when the m =0 or d, z state dominates, a large, pos-
itive enhancement is expected. The condition for a sub-
stantial enhancement is quite broad. For example, when
the condition IDol ) 1.2ID| I

+0.2ID2I is satisfied, the
positive enhancement should be greater than 10, or a full
order of magnitude. It is about 15% of the tota1 phase
space. To have an enhancement of more than 5, one-
third of the total phase space is available. Therefore, the
experimental observation of large positive corrugation
enhancement should be frequent. Second, when m~0
states dominate, an inverted corrugation should be ob-
served. Again, the probability for a negative image to
occur is large. Actually, when the condition

I Dol
(0.58ID| I

+0.1IDzl is fulfilled, the image corrugation
is inverted. This is about 43% of the total phase space.
To have negative corrugations with an enhancement fac-
tor of 5 or more, 14% of the total phase space is available.
Third, from Eq (7) an.d Fig. 3, it is apparent that the

rugated terms. Therefore, if 00 is not too small, the corrugation of the topographic image is

az = [(3x-1'/2'' ——, ) ' ——', ID i/Dol '(0
i x 1/ic'-) ' ——'„IDp/Dol '(/~1/tc)']»o,

(b) j(Y

FIG. 2. Gray-scale representations of the hexagonal cosine
function. Black represents 0, white represents l. (a) The func-
tion p (kx). (b) The function l —

p (kx).

FIG. 3. Enhancement factor E for diAerent d states at the

tip apex. The shaded area near E=O is the area where the s-
~'ave tip state theory is valid. In the hatched area near the bot-

tom, the theoretical amplitude of the negative corrugation
sho~s a spurious divergence. See text.
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cally on tip states, the average contour of the reconstruc-
tion in the [110] direction (with periodicity 63 A) does
not [4]. Consider its second harmonics, which represent
the details of the reconstruction contour. The charge
density is proportional to ~y~, whose 31.5-A-periodicity
corrugation is determined by the fundamental Fourier
component of a Bloch wave of periodicity 63 A. The
relevant parameters are k|=2m/(63 A)=0. 1 A ' and

lcf =[0.96 +0.1 ]'l =0.965 A. Substituting these num-

bers into Eq. (5), we obtain

hz = [1.03 —0.016~D /Do~

—4.4&&10 (Dz/Do) ]Ce "cos (0.1X),

where C is the peak-to-peak amplitude of the second har-
monics in the reconstruction contour.

From Eq. (9), it is clear that in the STM image of the
22x J3 reconstruction, the average contour (with the
atomic corrugation neglected) is almost exactly the
Fermi-level LDOS contour. In fact, for the contour of
the reconstruction, the d, 2 tip state behaves almost exact-
ly like an s state, and the effects of the m WO tip states are
negligible. This verifies the conclusion of Tersoff and
Hamann [10] that the STM topographic images of large
superstructures of metal surfaces at low bias follow the
Fermi-level LDOS contours, independent of tip states.

Now, we consider two alternative explanations. First,
there is the possibility of explaining the negative corruga-
tion by a ring of tip atoms; each has an s-wave state. Al-
though a negative image can be constructed with certain
choice of tip structures, the corrugation amplitudes of
those images must not exceed the amplitudes for an s
wave tip state. It is too small to be observable. Second,
Lang showed that when a nonmetal atom (such as He or
0) is absorbed on a jellium surface, the Fermi-level
LDOS at the atomic site appears as a minimum [12,131.
This phenomenon was observed by Kopatzki and Behm,
where a depression near an oxygen atom was observed on
the Ni(100) surface [14]. If the tip is an oxygen atom
adsorbed on a metal surface, an image reversal is expect-
ed. Practically, the tunneling current goes through the
metal atoms surrounding the oxygen atom. The con-
figuration of those atoms is similar to the case of a ring of
metal atoms as the tip. It is also too small to be observ-
able.

In the derivation of Eq. (5), we assumed that the first
term in Eq. (3) is not small. If the first term in Eq. (3) is
very small, the corrugation amplitude can be obtained
numerically. In this case, the negative corrugation ampli-
tudes due to the m&0 tip states are larger than the values
given in Eq. (7). The enhancement for the negative cor-
rugation is even larger than the values in Fig. 3. This sit-
uation can happen when ~Do( is much smaller than
(D~( or [D2( (as shown by the hatched area in Fig. 3).
Mathematically, the corrugation amplitude diverges as a
logarithmic singularity of the ratio ~D|/Do~ . Such a log-
arithmic divergence is similar to that of the anomalous-

corrugation model for graphite images [151. The corru-
gation enhancement in that case is extremely sensitive to
a very small amount of tip states with a diAerent m. Ac-
cording to the analysis of TersoA and Lang, such an
enhancement mechanism is not realistic for practical tips
[16].

Using the same method presented here, it is easy to
show that when an s state or a p, state dominates the tip
electronic states, corrugation inversion is unlikely to hap-
pen. The p„and py states will cause corrugation inver-

sion.
In conclusion, when an mWO state dominates the tip

state near the Fermi level, the atomic corrugation of the
STM image can be inverted. The amplitude of such in-

verted corrugation can be 1 order of magnitude larger
than the corrugation amplitude of the Fermi-level LDOS
contour of the sample surface. This phenomenon should
be observed on low-Miller-index metal surfaces with

nearest-neighbor atomic distances a=3 A, which pro-
vides a quantitative explanation of the STM images with

inverted atomic corrugations observed on metal surfaces.
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