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Energy Dissipation in Shear Driven Turbulence
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The Navier-Stokes equations are utilized to derive upper bounds on the turbulent energy dissipation
rate for an incompressible Newtonian fluid confined between parallel comoving plates. These estimates
provide a rigorous foundation for one of the basic scaling ideas of turbulence theory, namely, the in-

dependence of the dissipation rate and the viscosity at high Reynolds number. The bounds are compared
to experiments on turbulence in the Couette-Taylor system.
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The analysis of fluid turbulence presents one of the
great challenges to theoretical physics and applied
mathematics. Along with the absence of analytic solu-
tions for turbulent flows there are still unresolved funda-
mental mathematical issues: It is an open question
whether or not solutions of the 3D Navier-Stokes equa-
tions lose regularity at high Reynolds numbers [1]. Re-
cent years have witnessed significant advances in the
analysis of the 2D Navier-Stokes equations, notably the
rigorous and accurate estimation of the scaling of strange
attractor dimensions (predominantly) for body-force
driven flows [2]. Flows driven by boundary conditions,
like shear flows or convection, are frequently encountered
in applications but present some technical challenges [3].
Of considerable recent interest both theoretically and ex-
perimentally is the phenomenon of scaling [41—or the
lack of scaling [5]—in the global properties of such flows.

In this Letter we present rigorous upper bounds on the
time-averaged energy dissipation rate for an incompressi-
ble Newtonian fluid subject to a boundary-induced shear.
We show that the hypothesis of high Reynolds number
independence of the turbulent energy dissipation rate and
the viscosity [6] holds as an upper bound for this ge-
ometry. Our analysis, introducing the "background flow"

method, makes no a priori assumptions about the flow or
its spectrum and we use only elementary functional esti-
mates. These estimates hold for the high Reynolds num-

bers weak solutions of the 3D Navier-Stokes equations
(see Ref. [1] for details on the distinction between weak
and strong solutions) and they are of fundamental impor-
tance because they provide a rigorous connection between
the scaling hypothesis and the mathematical model for
incompressible Newtonian fluids provided by the Navier-
Stokes equations.

The calculation is presented in detail below both be-
cause of its simplicity and because the technique is appl-
icable to other boundary driven flows. In the conclusions
we interpret our results in terms of experiments on tur-
bulent flow between concentric cylinders (the Couette-
Taylor geometry) and point out some directions for fur-
ther development of the background flow method.

We base our analysis on the incompressible Navier-
Stokes equations,

t)u(x, t) + u Vu+ Vp = vh, u, (1a)

V'U=O, (lb)

s= v&[ JVuf (2&t'L„Lyh, (2)

where [7]
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FIG. 1. Plates of dimension L x L~ are separated by gap h in

the z direction. The plate at z =0 is moving at speed U in the x
direction and the plate at z =h is stationary. Boundary condi-
tions are periodic in the x and y directions.

for the velocity vector field u=(u„, uy, u, ) =(u~, u2, u3),
where x =(x,y, z) =(xt,x2, x3), v is the kinematic viscos-

ity, and p is the pressure determined by the incompressi-
bility condition. Mass units are chosen so that the densi-

ty p=l. The fluid is contained between rigid parallel
plates located at z =0 and z =h. The x coordinate lies
between 0 and L„ the y coordinate lies between 0 and L~„
and we impose periodic boundary conditions in the x and

y directions. The fluid is driven by the boundary at z =0
moving in the x direction at speed U: u(x, y, O, t) =iU
and u(x, y, h, t) =0. The setup is illustrated in Fig. 1.
The Reynolds number is defined as R =Uh/v.

The average energy dissipation rate (per unit volume)
1S
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IIVullz= Z
i j -I 1)xj.

and ( ) denotes the time average [8]

1
+ T

(f(t)) = lim — dt f(t) .T~p (4)

The goal is to establish rigorous bounds on c in terms of
the system parameters (U, v, h, L„L~) directly from the
Navier-Stokes equations. For example, the dissipation
rate for the stationary laminar solution, ul, ;„„=iU(l
—z/h ), is a lower bound on e:

dt 2 cP
au.

dx dy&p a=0

(6)
Assuming that llu(, t)llz is bounded uniformly in time,
the time average of this equation yields

&L. ~Lr Bu„
v(l IVul I2) = —vU 'dx "dy

z=0

This identity says only that the rate of energy dissipation

by the fluid viscosity is the power expended by the agent
enforcing the boundary conditions while working against
the drag at the boundary. It does not allow us to estimate
e solely in terms of the system parameters. That is, it is

not a closed relationship for e because we cannot a priori
connect the L norm of the gradient of u to the shear rate
on the boundary. Moreover, it has not been established
that the total energy is uniformly bounded in time.

The problems with the boundary term may be circum-
vented by changing variables. Decompose the velocity (in
the spirit of the conventional decomposition into mean
and fluctuating components) as

e —elaminar

In the nonstationary case the total kinetic energy must
be controlled in order to take the time average. Taking
the scalar product u with the Navier-Stokes equation and

integrating over all space we find, via appropriate integra-
tions by parts, the energy equation

(10)

& r llvll2

Because each component of v is periodic in x and y and

vanishes at z =0 and h, Poincare's inequality [10] implies

I IVvl 12 ~ (z'/i ')
I lvl I,'. (12)

Then

dt 2

' (2~' —R)llvll2

Thus if R ( 2tr -20, then the energy in the perturbation
decays exponentially with time [11]and the laminar solu-

tion is nonlinearly stable. When R & 2tr2 we may con-

clude only that the kinetic energy grows at most exponen-

tially in time.
The technical problem for large R is that both the dis-

sipative and driving terms are quadratic in v so a restric-
tion on the coeQcients of these terms is necessary for the
dissipation to control the energy input. To proceed we

are compelled to choose a background flow which satisfies
the boundary conditions and which drives llvll2 with a
"small" quadratic term, although perhaps with a "large"
term of lower order in v [12]. This is accomplished with

the functional form
r

(U/2b)(2b —z), 0& z & b,
(ii(z) = ~ U/2, 8 & z & h —b,

(U/2b) (h —z), h —b' & z & h,
(14)

d 1 Lx ~Ly ~h

, 2
II II'= — llv II' —„,'d „,'dy„, d y' . ,

r'L, +Lr r h |lv—v„dx dy dz p'
0 aJ0 alp Qz

The driving comes from the last two terms on the right,
one quadratic and one linear in v. The background flow

profile is essentially arbitrary at this stage, constrained
only by the boundary conditions.

Consider first the choice ip(z) =ul, ;„„. Then the
linear driving term is absent and for low enough Reynolds
numbers we may explicitly bound the energy in v. Ac-
cording to the Schwarz inequality [9] and the relation
2ttg & tt 2+ b 2

tL„pLy th
dx dy dz v„v, —llv. llzllv. llz

u(x, y, z, t) =if( )+xv( yx, z, t), (8)

where u's boundary conditions are contained in the
"background flow" iP(x): p(0) =U and p(h) =0. Then
v satisfies

Bv(x t) . , rl+v Vv+irt'v, +p v+Vp=vhv+ivp", (9a)
X

U-

U/2-

V. v=0, (9b)

where p' and p" denote derivatives of p. The boundary
conditions for v are periodic in the x and y directions
while in the z direction, v(x, y, O, t) =0=v(x,y, h, t). The
energy equation for v, obtained by dotting v into Eq.
(9a), integrating, and integrating by parts, is

0
6

I I Z
h-6

FIG. 2. Background flow profile p(z). This profile is not a
solution of the Navier-Stokes equation, nor does it necessarily
correspond to a mean flow profile.
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as illustrated in Fig. 2. We refer to the parameter 6' as the "boundary layer thickness. " The advantage of this form is

that it concentrates the support of Itr' near the boundaries where the components of v vanish.

Application of the fundamental theorem of calculus and the Schwarz inequality shows that the x-y integral of the

product v v, is bounded uniformly in z according to

40
f Ly rL rLy rz Qy

dx J dy v„(x,y, z) v, (x,y, z) ( z dx dy J dz0 &0 ~0 0 t)z

2- ]/2-
r'L r Ly r z Qy

dx dJ dz&0 &0 &0 tiz

2
- ]/2

(I S)

tL„ t Ly t h U I L„&Ly
dx J dy& dzp'v„v, = dx dy

pb t L„ r Ly t h

dz v„v, + dx~ dy dz v, v,

2

+ az, s

2'
Ub I

z

where the incompressibility constraint on v was used in the last step above [13]. The linear source term [the last term in

Eq. (10)] is also simply estimated:

An analogous estimate holds near the z =h boundary. The quadratic source term [the next-to-last term in Eq. (10)] is
then simply estimated in terms of 8 and the dissipation:

, BV„, 0iy
dy dz p' " ( vl I

y'l l,
L Ly& vU

26

' ]/2

I 1»112. (i 7)

Injecting the bounds in Eqs. (16) and (17) into the energy equation (10),
]/2

(is)dt 2 S~2 26
—

I lvl 12'( —
vl I»l lz+ I l»112+ vU

The boundary layer thickness in the background liow may now be adjusted so that the viscous dissipation overcomes
the quadratic driving term. We choose

b =4J2(v/U) =4J2hR
Using Poincare's inequality and 2ab ~ a +b to break up the last term, we And

(i9)

(20)

Hence the kinetic energy decreases if it is greater than U h L,L»/tt 6 and we conclude that the kinetic energy is indeed
bounded uniformly in time.

The time-averaged energy dissipation rate is bounded by taking the time average of Eq. (10) and using Eq. (16) com-
bined with the definition of 8 in Eq. (19) to see that

rL, rL, rh ~Lx t Ly ~h—(llVvllzr+v dx dy dzy' = ——(llVvllz) — dx dy„dzdv, v, )~0. (2i)
Bz

Then

~ &ll»l!2)+2 „dx
L Lyh

t Ly

Jo 40
'd dzd' *

)+lldllz '

L~Lyh

1 U

sJz h

This rigorous upper bound on the energy dissipation (val-
id when R ~ 8J2 so that 6 ( h/2) is independent of the
viscosity, in accord with the scaling view of turbulent en-

ergy dissipation.
We may interpret this result for the case of turbulent

flow between concentric cylinders, at least in the limit of
large aspect ratio and a narrow gap. The average torque
G (measured in units of pv L», where L» corresponds to
the length of the cylinders) required to rotate the inner

1650

(22)

! cylinder at angular speed 2trU/L (where L„corresponds
to the circumference of the inner cylinder) is the total-
energy dissipation rate (e&&L„L»h) divided by the rota-
tion rate. Utilizing the bound in Eq. (22),' 2

sL Lyh L
G = (0.0141 R . (23)

2EU/L„pv L»

In Ref. [5], Lathrop, Fineberg, and Swinney report
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energy dissipation rate like that found here [17]—or for
flow past a solid object.
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FIG. 3. Torque vs Reynolds number for turbulent flow be-
tween concentric cylinders. Solid line: upper bound from Eq.
(23). Dashed line: lower bound using Eq. (5). Discrete points:
fit to experimental data of Ref. [5]. The ratio L,/h =16.5, from
Ref. [5], is used in the bounds.

measurements of G vs R for Reynolds numbers up to 10 .
In Fig. 3 we plot their torque data along with the upper
bound in Eq. (23) and the lower bound [G) (2z)
x(L„/h) R] computed from Eq. (5). We observe that
the rigcrous upper bound is 1 to 2 orders of magnitude
above the experimental values. Experimentally it is

found that the exponent a in the scaling relation 6-R'
is not constant, but increases from 1.66 to 1.87 as R in-

creases between —1.3x10 and 10 . Extrapolated, the
data suggest that a will reach the value 2 at
R=1.5x10 . The bound derived here implies that a
cannot continue to increase as R increases, but that it
must eventually stay at or below the scaling limit a =2.

We close with several comments. It is an open ques-
tion whether our upper bound for the energy dissipation
rate can be improved by utilization of a more sophisticat-
ed background flow ansatz, or whether scaling ever sets in

for such a wall bounded shear flow (the phenomenologi-
cal logarithmic friction law [141 predicts otherwise)
The background flow method can also be applied to other
systems such as pipe flow and thermal convection in the
Boussinesq approximation [15], and the bounds derived
for those cases, in addition to that derived in this paper,
are in accord with the scaling obtained by a variational
approach [161. It remains a challenge to apply the back-
ground flow method to open systems like grid-generated
turbulence —where experiments anticipate scaling of the
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