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A direct numerical study of a model of superflow, the nonlinear Schrodinger equation, and simple
analytical arguments shows a very striking phenomenon: The flow around a disk creates a drag force
beyond a well-defined threshold velocity, linked to the emission of vortices from the perimeter of the

disk.

PACS numbers: 47.20.Ky, 05.45.+b, 47.10.+¢g

It has been proposed [1] to describe neutral superflows
by the nonlinear Schrodinger equation (NLSE), which
reads in a dimensionless form as
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The Madelung transformation maps the NLSE into a
fluidlike equation, p=|¥|? being the density, although
the fluid velocity is minus the gradient of the phase ¢ of
v
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It has long been known too that the phase singularities
of ¥, at the zeros of this function, play a role very similar
to the one of point vortices in ordinary inviscid hydro-
dynamics (perfect fluid), an analogy that has been well
studied [2]. Note that these phase singularities are not
singular in a mathematical sense as far as the NLSE is
concerned. However, there are differences between per-
fect fluids and what is described by the NLSE. Indeed
one of these differences is the quantization of the circula-
tion in vortices of the NLSE, with no counterpart in ordi-
nary fluids. Another difference, perhaps less obvious, is
that the NLSE bears sound waves of finite speed, al-
though one usually makes a comparison between the
NLSE and incompressible fluids. We show here that the
mixing of the two phenomena, compressibility and quant-
ization of circulation, has important consequences that
show up very dramatically in computer simulations. Our
findings are based upon the comparison between simple
theoretical arguments and numerical simulations of the
NLSE. Jones and Roberts [3] have studied numerically
solutions of the NLSE in the form of ring vortices as-
sumed to be stationary in a moving frame of reference,
and in an infinite system without any obstacle. Our simu-
lations yield a time evolution of solutions of the NLSE
aimed at modeling a flow around a fixed obstacle. Vor-
tices, when they appear in our simulations, are produced
by the system itself, without being put in at the begin-
ning. Our central result concerns the drag on a moving
object. It happens that this drag is zero until a critical
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velocity, where it begins to increase. In an ordinary per-
fect fluid, this critical velocity would be the one where a
shock begins to form, but here no shock wave can exist
because of the absence of intrinsic molecular damping, so
that shocks are replaced by the emission of vortices,
which leads to a vortical and dissipative flow on large
scales.

Although formally simple, the NLSE has a number of
nontrivial features. A crucial one is the Galilean invari-
ance. Given in free space a solution ¥(x,r), with x space
and 1 time, then ¥(x —vz,0)expli(v-x — +¢2)] is still a
solution, where v is the velocity of an arbitrary Galilean
boost. Another important property of the NLSE is its
phase dynamics: The NLSE is invariant under a global
phase change ¥— We™ ¢ arbitrary real. This implies
that long-wavelength perturbations of the phase have to
decay slowly. In particular, when linearized around a
uniform solution, \I'0=p”2e""', the phase equation takes
[4] the form 82¢/812=c2A¢, with ¢, =p'/>. This has two
consequences: First, the time-independent flows are irro-
tational, because then the phase equation becomes simply
Laplace’s equation A¢ =0, the fluid velocity being —Vg¢.
Then, for time-dependent flows there is a finite speed of
propagation of perturbations, p'2. A very important
question in superfluidity is the limit speed: Below a criti-
cal speed there is no dissipation, and one appears beyond
this critical speed. To check whether this transition is
present in the NLSE, we did the following computer ex-
periment: We started with initial conditions with a fixed
disk in a large box [5], and then made a Galilean boost of
the solution by keeping the disk fixed. The boundary con-
dition on the disk perimeter is the Dirichlet condition
¥ =0, a crude modelization indeed of the interaction be-
tween a solid surface and the condensate. It represents
very roughly the fact that the superfluid does not flow
into the solid. More complicated boundary conditions
have been proposed [6]. Although we have not made nu-
merical simulations with these elaborate conditions, it is
likely that the phenomena discussed below are not depen-
dent on the details of the boundary conditions. In partic-
ular, the loss of steady solution beyond a certain value of
the flow speed is unaffected by the details of the boundary
condition on the solid, as long as the velocity is tangent to
this boundary. The details of this boundary condition
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should be relevant at length scales of the order of the size
of the vortex core, and so could affect, for instance, the
details of the release of the vortices by the solid bound-
ary, but not the frequency, or the drag law. The relevant
parameter for molecular effects is the ratio of the vortex
core to the diameter of the disk, assumed to be small here
(5 in our numerical simulations).

At small velocities, the solution accommodates the
boundary conditions everywhere after some transient to
yield a stationary velocity field without dissipation, be-
cause of the d’Alembert paradox for perfect fluids.
Beyond a critical velocity, that we shall characterize
later, vortices begin to be emitted [7] more or less period-
ically from the disk, yielding an average drag on the disk,
this drag tending linearly to zero at the onset, as does the
frequency of emission of vortices. We can estimate the
drag from the energy transferred by the flow to the disk.
This energy for one period of emission of vortices is
Efow=F(v)T, where F is the mean drag, (v) the mean
flow velocity, and T the period. The energy of the vortex
pair is Evortex =I'*In(2a), where a is the diameter of the
disk, in the microscopic unit length used to write the
NLSE in the dimensionless form (1), and I is the quan-
tized circulation, equal to +1 or — 1 with our units. The
period T diverges as the velocity at infinity tends to the
critical velocity from above. Let ¢=v —v, be the small
difference between the actual value of the velocity at
infinity and its value at the threshold of emission of vor-
tices (or of drag). The quantity ¢ is chosen for measuring
the velocity at infinity in such a way that the transition to
drag occurs at ¢=0: There is no permanent drag for ¢
negative and there is such a drag for ¢ positive. After the
emission of a vortex, its velocity field balances the main
velocity field to make it locally less than the critical value
everywhere on the disk. As this vortex is convected
downstream, however, its contribution to the velocity on
the perimeter of the disk decreases until the total velocity
there again becomes larger than the critical value,
triggering the emission of a new vortex, and so on. As
the velocity induced by a vortex decreases like the inverse
of the distance, a simple estimate shows that e=T/(v)T;
then T~ 1/¢ and F~e&. At higher velocities, the emission
of vortices becomes more and more irregular with an in-
creasing average frequency and the vortices form a kind
of turbulent wake. In the far wake these vortices radiate
their potential energy into the phonon field, due to the ac-
celeration they are submitted to in their rather chaotic
motion (interaction of vortices of like sign, with the
cylinder, and so on), and all energy and momentum are
ultimately carried away at long distances by phonons.
Lund has calculated the loss of interaction energy of ac-
celerated vortices [8] due to this radiation in a compressi-
ble fluid.

The transition to time-dependent flow can be under-
stood as follows: In a perfect incompressible flow around
a disk, the fluid velocity is the greatest at the point across

the stream velocity on the perimeter, where the fluid ve-
locity is twice that at infinity. Here the flow becomes su-
personic when the fluid velocity is only half the sound
speed at infinity. In ordinary fluids this would lead to a
shock wave. But here this is impossible, as shock waves
require dissipation in a thin layer, and there is no such
formally dissipative term in the NLSE. Instead, in the
supersonic region, vortices are generated on the perime-
ter, very near the point of maximum velocity, as seen in
Fig. 1. On a large scale a string of vortices with the same
sign may be seen as a tangential discontinuity (or shear
layer) of the fluid velocity. This tangential discontinuity
allows the matching of different domains of fluid with
different velocities, and so avoids the formation of shocks,
which normally are the discontinuities instead. All of this
can be made more rigorous by trying to find a stationary
solution of the NLSE at distances from the surface much
greater than the microscopic unit length, and with a uni-
form flow at infinity. Putting dp/dz =0 in (2a) we obtain
the continuity equation V- (pV¢) =0, and p is determined
by (2b) together with 8¢/dt =po+vZ/2, expressing the
frequency of the solution of (1) at infinity. Note that a
steady flow corresponds to a solution of (1) with a single
uniform frequency. Neglecting — (1/2p'2)V?(p'”?) on
the right-hand side of (2b) because it involves higher
space derivatives that are precisely neglected in this
long-wavelength approximation, one obtains from (2b)
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FIG. 1. Cylinder immersed in the “fluid.” One represents the
modulus of ¥ at an instant of time. The cylinder is the black
circle in the middle, and the boundary condition on its surface is
¥ =0. The speed at infinity is half the speed of sound, slightly
above the onset of drag. This shows that the drag is due to the
emission of vortices on the surface of the cylinder at the point of
maximal fluid velocity. The vortices appear as white dots close
to the cylinder and are convected by the mean flow. The sound
waves seen far from the cylinder are transients, not relevant for
the onset of continuous drag.
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Here po is the normal density related to the sound speed
(c2=po), v is the velocity at infinity, and v is the local
velocity. Next if 02> p(v) lie., 5§ Bv2—03) > a lo-
cal instability develops, leading to the release of vortices
(we point out that the velocity near the vortex center is of
the order of the sound speed). This implies that the
steady solutions, at least for large objects, do not exist
anymore when the flow becomes supersonic somewhere,
and there is a critical velocity beyond which there is dissi-
pation. Via the hodograph transformation (see Sec. 108
in Ref. [9]) one can show that the maximum velocity of a
permanent flow of perfect compressibility is always
reached on the perimeter of the obstacle. This maximum
velocity can be approximated by 2v., as in the in-
com/pressible case, yielding a critical velocity equal to
z ! 2C5, in agreement with the numerically observed
value.

This dissipation can be measured in computer experi-
ments by the mean drag on the disk. This drag F is given
in general by the integral of the stress tensor on the
perimeter of the disk. In Cartesian components F,
=fT#Vn"ds, where n" is the normal to the perimeter and
ds the line element there. From (1), one has the conser-
vation relations 8p/0t+9,J, =0, with J,=5i(¥*9,¥
—¥9,¥*) and 9,=9/0x,. The momentum conservation
yields 8J,/8t+8,T,,=0, with

Ty=—|¥|25,,+ 5 (¥*9,,v+¥3,,¥v*)
-3+ (8,¥*9,¥v+0,v9,v*).

There is no drag for a “steady” (actually with a single
quantum frequency for ¥) solution of the NLSE, another
version of d’Alembert’s paradox. For an unsteady solu-
tion, the time-averaged streamwise component of the
drag has no reason to vanish. We plot in Fig. 2 its depen-
dence on the flow velocity at infinity, showing its critical
behavior at the onset of the release of vortices. At very
large velocities, one would expect a Newton drag law
(drag proportional to the square velocity), because the
vortices would be then emitted more or less as a continu-
ous line, yielding a separated wake with the same velocity
as the disk in a background fluid at a different velocity,
which is the familiar Kirchoff picture for the Newton
drag. It is possible, however, that this is changed by tur-
bulence in some way. We were not able, however, to
compute the drag force for high velocities due to numeri-
cal instabilities for average velocities bigger than 2¢;.

It is interesting to notice too that this might provide an
explanation for the difficulty met in reaching the critical
speed in superfluids: Recall first that the maximum speed
is on the perimeter; then suppose that the disk perimeter
is corrugated, with a length scale much smaller than the
radius of the disk, but still much larger than the diameter
of the vortex core (say 1-um corrugation compared to 5-
A vortex core). Then the far field for these corrugations
will already be the near field of the inviscid flow on the
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FIG. 2. Drag force on the cylinder vs the velocity of the fluid
(in units of ¢;).

disk. We have seen that this perimeter flow is accelerated
somewhere by a factor of 2 (for a sphere this would be a
factor 2). Whence, the corrugations will likely still in-
crease this velocity by some factor larger than 1, making
the transition speed even less, when measured by the
speed at infinity. In particular, this increase of the local
speed is even larger near singular points of the solid sur-
face (which could be on small crystals sitting on the sur-
face of the vessel containing the fluid), as it is known that
the fluid velocity diverges near these singularities for a
perfect incompressible fluid [9].

We thank P. D’Humieres, V. Hakim, P. Coullet, L.
Gil, K. Emilsson, P. Maissa, Y. Lansac, E. Varoquaux,
and the INRIA staff for their help. The numerical simu-
lations were done on the Connection Machine of the
“Centre Reégional de Calcul PACA, antenne INRIA-
Sophia-Antipolis” through the R3T2 network. Y.P. and
S.R. thank A. C. Newell and the Department of
Mathematics at the University of Arizona where this
work was completed.

[1] V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz.
34, 1240 (1958) [Sov. Phys. JETP 7, 858 (1958)]; E. P.
Gross, J. Math. Phys. 4, 195 (1963).

[2] R. J. Donnelly, Quantized Vortices in Helium II (Cam-
bridge Univ. Press, Cambridge, 1991).

[31 C. A. Jones and P. H. Roberts, J. Phys. A 15, 2599
(1982).

[4] N. N. Bogoliubov, J. Phys. USSR 11, 23 (1947).

[5] We used a Gauss-Seidel Crank-Nicholson finite-differ-
ence method to integrate Eq. (1). The time stepping for
¥(t) from ¢t =0 to &t is as follows: Write the NLSE as
i9¥/8t=H(:)¥, where H(-) is a nonlinear Hermitian
operator with an obvious definition from (1). Then ¥(&1)
is defined from Ww(0) through [1+ 3i8tH (8:)1w(51)
=[1— $i5tH()]¥(0). This (classical) numerical
scheme yields, for 8¢ small, ¥(8¢) exact to second order



VOLUME 69, NUMBER 11

PHYSICAL REVIEW LETTERS

14 SEPTEMBER 1992

in 6t at least, and has the very big advantage of conserv-
ing exactly the norm and energy. We took the disk diam-
eter =10, box size =512x256, with boundary conditions
¥ =0 on the disk and no reflection on the outer boundary.
We implemented the method of no reflection by
artificially imposing a very large dissipation on the outer
boundary. This dissipation was imposed by changing the
equations gradually from conservative dynamics to dissi-
pative dynamics when reaching farther from the “working
area.” In this working area (about 20 times larger than
the radius of the cylinder), the equation is exactly the
NLSE. The area with damping does not appear in the
pictures presented. Other outer boundary conditions were
implemented, like adaptative mesh in space, to increase
the space step far from the working area, without chang-
ing significantly the numerical results. There is no prob-
lem for matching the outer boundary condition with the
phase of the vortices at infinity, because the vortices are
emitted in pairs of opposite signs and so do not alter

drastically the boundary condition for the phase at
infinity. The norm and the energy of the solution are con-
served in time to better than 1 part per 10® per time step
and to 1 part per 107 per unit time.

[6] P. G. de Gennes, Superfluidity (Pergamon, New York,

1975).

[7] G. G. Nancolas et al., Nature (London) 316, 797 (1985),

have observed an onset of drag on ions in superfluid heli-
um, which they interpret, as does K. W. Schwarz [Nature
(London) 316, 766 (1985)], by the emission of ring vor-
tices. This is very likely close to our findings. However,
we show here that the mechanism of the release of vor-
tices in the present case is quite different from the usual
formation of vortices in Bénard-von Karman wakes, very
crucially related to the dynamics of viscous boundary lay-
ers, totally absent in solutions of the NLSE.

[8] F. Lund, Phys. Fluids A 1, 606 (1989).
[9] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Per-

gamon, Oxford, 1959).

1647



FIG. 1. Cylinder immersed in the “fluid.” One represents the
modulus of ¥ at an instant of time. The cylinder is the black
circle in the middle, and the boundary condition on its surface is
¥ =0. The speed at infinity is half the speed of sound, slightly
above the onset of drag. This shows that the drag is due to the
emission of vortices on the surface of the cylinder at the point of
maximal fluid velocity. The vortices appear as white dots close
to the cylinder and are convected by the mean flow. The sound
waves seen far from the cylinder are transients, not relevant for
the onset of continuous drag.



