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We exhibit a factorization of the exactly solvable discrete 1/r exchange Heisenberg model. We ex-
press the Hamiltonian of the model on a lattice of L sites, as a sum over the squares of L operators in
eight distinct ways, using the eight generators of the SU(3) group, and demonstrate that each of the 8 L
operators annihilate the Gutzwiller wave function. The wave function is thus proven to be the exact
ground state of the 1/r 2 model, and we also provide a scheme for the construction of an infinite number
of Hamiltonians for which it is the ground state.

PACS numbers: 75.10.Jm, 05.30.—d, 71.28.+d, 71.30.+h

The one-dimensional Heisenberg antiferromagnetic
model with I/r exchange was solved by Shastry [1] and
independently by Haldane [2]. The Gutzwiller wave
function [3] Is=exp(ixgxj)g;&~sin p(x; —x~), with

p =x/L, 1 ~ x; ~ L, was shown to be an exact eigenfunc-
tion of the Hamiltonian

Hp p g SpSJ',
1

i&J sin P x; —xj

with an eigenvalue Ep pL(L —+5)/24 Howev. er,
there has been no analytic demonstration of +s being the
absolute ground state of the model. Moreover, it has not
been clear whether Hp is the only Hamiltonian for which
9's is the ground state. In this work, I prove rigorously
that 0'~ is the absolute ground state of an infinite number
of operators that I display explicitly, and among them is

Hp. Central to my work is the surprising result that the
Hamiltonian can be rewritten as a sum over squares of
operators in (at least) eight different ways, with the
SU(3) group providing a nontrivial metric for the scalar
product of two SU(2) operators.

The primary direction to this work came from the ob-
servation, that the continuum I/r model on a ring, i.e.,
the Sutherland model [4], with a Hamiltonian

H =gp; +p X(k —1)g sin p(x; —x~) —const,

can be factorized [5] in the sense of Darboux [6], and
written as QQJQ„, with Q„=p„+i(kp)g~ cot&(x„
—x~). Further it is easy to see that the operators Q„an-
nihilate the Jastrow-Sutherland wave function +sin p(x„—x ), whereby one has the rigorous result that the wave
function is the ground state of the stated model. Similar
results hold [5] for the Calogero [71 system as well, and
the existence of annihilators is trivial to establish for an
arbitrary Jastrow function. The operator (=QQ, Ct,
where C„ is a fermionic operator thus provides a basis for
a supersymmetric description of the model, and this fac-
torization seems to be important in elucidating the alge-
braic structure that supports this family of exactly solv-

able models [5]. It is thus natural to ask if a similar fac-
torization holds for the discrete I/r model.

In this work, I first construct an "inner product" be-

tween, or more precisely a bilinear form of, two SU(2)
operators in the fundamental representation of the SU(2)
group (i.e., (S) =

2 ), using a "metric" picked from
SU(3), and show that this leads to operators that are
effectively the square roots of Hp. The resulting sets of
operators are then shown to annihilate 0'~.

We begin by defining dual variables iil =P~„~g; JSJ'.
Here g;,J is assumed to be an odd (real) function of
x; —

x~; it is in fact &cot&(x; —xj) for the model con-
sidered in detail, but more general forms are possible, and
we impose conditions on it below. Further, I define a sca-
lar product [8]

V~[K] S g, p(Z)y; . (2)

When the "metric tensor" g is the unit matrix, the opera-
tor V reduces, apart from a term iS; Si,i to a mutually
commuting set of operators considered by Gaudin [9], as
the small coupling limit of the Yang Y operators [10],
and similar operators have been recently discussed by
Laughlin [11]. My generalization involves picking the
metric g from the eight SU(3) generators, i.e., the Her-
mitian traceless matrices. Recall that the Gell-Mann
matrices [12] for A, 1, 3, 4, 6, 8 are real symmetric
which we denote collectively by k E S, and the rest, X =2,
5, 7, are imaginary antisymmetric (denoted by A. E A).
We square the above to find

I I

V~[A] V;4] g gg;~+ 4 g SfSgg(~g; I,M[) ~a, a]
j j,k

—
4 Q S SJ'g; JF[k~a, a], (3)

where we use the convention throughout that a prime on

the sums indicates that all indices in the summand are
distinct, with M[X,(ap] =(g(k)tg(A, )),s, e the antisym-
metric tensor, and

F[k~a, P] =e(p, o, a)e(y, b;P)g~~„() )g~q() ) .

The tensor F is easy to evaluate on writting a SU(3) rep-
resentation for the e symbol (W')p „e(a,p, y) giving
FP.(a,p] = —Tr[IV' g W~. g]. It is readily seen that
both M and F are diagonal tensors, leading to the result
that the right-hand side (RHS) of Eq. (3) is diagonal in
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TABLE I .The tensors M and F [eI = [1,0,0]g,s, e2- [0,1,0}g,s, e3 [0,0, lip;,I].

Mkl eI+e2 eI+e2 eI+e2 eI+e3 eI+e3 e2+e3 e2+e3
F[A,] —2e3 2e3 —2e3 —2e2 2e2 —2eI 2eI

1/3(e I +e2+4e3)
I /3 (—4e I

—4e2+ 2e 3)

the spin space for all A, . The tensors M and F are given in Table I. %e next impose a constraint on the functions g so
that the sum over i in Eq. (3) leads to interesting results. We require g to satisfy a functional equation with

u -y(xi —xJ), v -y(xJ —xk), w-y(xk —x;), u+v+w -O,

g(u)g(v)+g(u)g(w) +g(v)g(w) f(u) +f(v)+ f (w) + y(u) y(v) y(w) . (4)

This equation expresses a separation of variables of a kind familiar from Jacobian elliptic functions and has three expli-

cit realizations that I am aware of [13], with a triad of functions [g((f( ( y[: (a)

[/cot�(

(p /3 ( (0]; (b)
{8I/8I(((—rJIL)/tt —(1/2)8I'/8I((0]; and (c)

[cn/sn((1/3(1+m/4)+(I/2)(dn —1)/sn ((1/(2m) [(1 —dn)/sn] j .

Case (a) is of primary importance in this work, and the new case (c) is of interest in the continuum problem, since by an

elementary extension of our arguments [5], the Jastrow wave function +[1—dn[A(x; —xi)]/sn[(x; —xJ)A]] is the ex-

act ground state of a model of many particles with H =QQ tQ„, and Q„p„+igpcn/ sn[A(x; —xJ)], corresponding to
two-body and three-body interactions of a particular type, which generalizes and contains the Sutherland 1/sin problem

as a special case. We will return to its detailed study in a later work, we merely note here that the three-body term in

the continuum problem, in fact reduces to a two-body term in the discrete case. The sum over i can be carried out in

Eq. (3) and using Eq. (4) we find

gV~ [1I]V;[)I]=—gp+ 2 g S;SJ'(2M[1I,(a, a] —F[1I,(a, a])g;,J+M[)I,(a, a] [(4 L)f;,J —y;—,J
—fp] (5)

I i&j
with gp g'g; J, fp g'f; J, and Iir; J g'y; J k. We now observe that the combination 2M —F appears in this function,
and we give it a name K[A, (a, a] 2M —F. Henceforth we specialize to case (a) for the function g, i.e., the tri-
gonometric case, and find

2 2

gV; [A]V;[A] L(L —1)(L—2) + (LM[1I,(a, a] —F[A, (a, a])[L/4 —(S;) ]
24 4

+ g S SJvK[X(a,a]/sin2&(x; —xi),
i &j

where S; is the total spin operator. We now consider the case X E 4', wherein K 2[1,1,1]d;,s [8]. Hence for this class
we find (with Hermitian Vs)

g(V;[A,]) Hp —Ep — (S;) (LM[A, (a, a] —F[1I., a, a]) . (7)
i

Note that the nontrivial third term in the RHS of Eq. (6), manages to be a rotational scalar owing to a delicate inter-

play between the structure of the functional Eq. (4) (giving the factor of 2 in front of M in K), and of the structures of
F and K.

We next turn to the case lt, E A. The structure of the function K suggests that we define a triad L iVI[7],
Lr i V~ [5], —and L,' i V~ [2], these are "angular-momentum-like, " in the sense that we can express L;

ge(a, p, y)g; JS, S~". We further need two results that can be obtained by explicit summations. The dual variables y,'
satisfy [8]

g(IJI", ) 4 g S SJ/sin p(x; —x, ) —L(SI') '+L(L 2+2)/12
i g CJ

and

( I )y 'g[—L;, Itr; ] =2 / S;"SJ/sin'y(x; —XJ)+L/2 —g(I b. r)(S,")'. —
i i&j 7

Putting these together, we 6nd for a =x,y, z,

g(L +iItr,')(L iIJr ) =3(Hp —Ep)——(ItI /4)g(SI") [L+4+3(L—2)B,„]. (lo)
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We next discuss the action of the various operators
defined above, and propose to prove for all i E [1,L], that
V; [X E 1](0 g& =0 and further that (L,' —iiji ) (%'g) =0 for
a x,y, z. Towards this end we first state two results
6,%, and assuming these, prove the annihilation of (%'s)

by these operators. Later we prove these two results,
completing the program. The results in question are as
follows: For i C [1,L],

6: [Q;(%' ) 0(Q;—=gg; [S;+S —2(S;+ —')(S'+ —,
' )lI

and

&: [R1%' ) OIR =Zg, S S

where S;+ S;+iS;,etc. , and (%'s) is written in the stan-
dard S' basis [1] as QOs+S;+(J f). It is useful to
display the structure of V[X]. Recall

Vi[8] I/J3+gi j[SfSj+S;Sj 2S—fSj]
J

which we denote

(i4)gg;, e, (xi, .
J

this abbreviated notation, V[1]= [xy+yx], V[3] = [xx—yy], V[4] =[xz+zx], V[6] =[yz+zy], and of course
L'=gti„e(a, P, y)[P, y]. We first consider the operation
of U=+S," on 6, this is a particle-hole transformation
operator, and sends (S;+,S;,S;) (S;,S;+, —S ), and
gives an independent result, which we add and subtract to
the original one (we use gjg; j.=0 for L an even integer),
giving V;[8](%'s)=0, and also (L; i i.t—r,') (+s) =0. Using
the fact that (Og) is a singlet, this result is suScient to
show that L; —iy,' are annihilators, for all o;. We next
consider the result %, and its partner under U, adding
and subtracting we find V;[1](+s)=0 and V;[3](+s)=0,
and using rotational invariance of @s, conclude that V; [4]
and also Vi[61 are annihilators.

We next prove the two results %,S. For this purpose,
it is useful to absorb the "Marshall" phase factor of 0'g
into the operators (through a unitary U'=+S;), and
define an oscillating function g; J =(—1)"' "'g; j, where-

by the transverse terms of Q;,R; are redefined with the
(13) g; j function. Consider first the operation of Q; on (+g);

we commute the S; to the right, where it annihilates
V[8] I/J3[xx+yy —(2)zz], and in () )), hence we collect as a common factor (in the

tilde representation)
I

, xj, . . . , xt jz) +g(xi, ~ ~ ~ sxj —l~xi~xj+i~ ~ ~ ) 2 2 Xik,
, tt ~ f&,L/2)

We now use the elementary identity for q =(2'/L) xint,
and Iql «,

r

g ( —1)"cot exp( —inq) =inx . .Lq
n-i 2r

(is)

and the result vanishing for (q( z. This implies that the
cotangent function acts as a linear derivative on plane
waves inside the first (Brillouin) zone (FBZ). Further,
we note that under multiplication, generic periodic func-
tions on [1,L] possessing arbitrary momenta (i.e., Fourier
components), require "umklapp" reduction (i.e., reducing
momenta mod2x) to reduce the product function into the
FBZ. "Good functions" can now be defined as the class
of functions which can be expressed as products of
periodic functions that do not require umklapp reduc
tion Typical ex. amples are products of plane waves with

small enough momenta, and in fact 0s was shown [1] to
be a good function in precisely this sense. The property
of convolution with sin in place of cot in Eqs. (14) and
(15) was shown to be analogous to the second derivative.
For good functions, it is possible to show the existence of
the Liebnitz product rule, and the convolution with cot
above is a bona-fide first derivative for functions f in this
class, i.e., P~g; jf(xj) =f'(x;). This immediately implies
that Eq. (14) vanishes identically, proving 6.

In order to prove %', we push the S; S~: operator to
the right and collect a common term

L/2 —2g(-I)"' "~(y(,—,))g(, —,) Q g(, — ),
J k 1

(16)

where ((x)—=sin [z/L(x; —xj)], and the set of variables
xk, k =1, . . . , L/2 —2, stands for arbitrary locations of
the L/2 —2 "spectator particles. " I now claim that this
vanishes identically by using the elementary identity

L —
1

g cot(np)sin (np)exp(iqn) =0,

unless (q(=2n/L. This is easy to see by expanding the
product term in Eq. (16), and exainining the total
momentum involved. This completes the proof of the re-
sult R.

It is easy to see from Eqs. (10) and (7), that the fol-
lowing rotationally invariant representations follow for
Ho.

Ho =ED+ —,
' gg(LP+iiti, ') (L —iiji,')

+ -', (L+ I)q'(S, )',
and

Ho =ED+ g g(V;[k) )'+ —,
' (L + 1)p (S,) . (19)

It is now obvious that Eo is the ground-state energy of
Ho, we take, say Eq. (19), the right-hand side consists of
positive terms that annihilate +g. We may take any posi-
tive polynomial in V~[it.], and this operator also has +s
as its ground state. A general operator of this kind is not
rotationally invariant, in fact none of the Vs are, while
%'g is. We have thus another interesting example of a sit-
uation, where the "invariance of the vacuum exceeds that

166



VOLUME 69, NUMBER 1 PHYSICAL REVIEW LETTERS 6 JULY 1992

of the world" [14,15].
The operator algebra of Vs is highly nontrivial, and is

currently under study. We may regard ri =+V;Ctt, with

C; a fermion, as giving rise to the square root of 00, in
the sense that it is the bosonic part of fri, rlt}. The func-
tional equations (16) and (4) seem to be promising for
further study, in order to obtain other soluble models. It
is interesting that the discrete model may be regarded as
a second quantization of the continuum model, since the
different magnetization sectors correspond to different
particle numbers. This point of view provides some novel

insights into the nature of this class of states. The prop-
erty %, for instance (which is clearly valid at any particle
number (L/2), is very hard to see in the first quantized
problem, and expresses a fundamental incompressibility
of these Jastrow states.
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