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Phase Transition and 1/f Noise in a Game Dynamical Model
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We study a population of interacting species, described by the replicator model well established in

theoretical biology. Using methods of statistical physics we present an exact steady-state solution to the
model as a function of the population's cooperation pressure u when the number of species is large and
the interactions are taken as random. When u is lowered to a critical value u„ the solution becomes un-

stable. This phase transition manifests itself by a llf behavior in the power spectrum of the system's

response against weak external noise.

PACS numbers: 87.10.+e, 02.50.+s, 64.60.Ht, 75. 10.Nr

Statistical physics of disordered systems has proven to
be extremely useful in understanding the behavior of
complex systems consisting of many entities which in-

teract via competing interactions. Prominent examples of
such systems are the neural network models of the brain,
which have been extensively studied in the last years. Re-
cently similar methods have been applied to the modeling
of complex ecological systems [1-31. An important prob-
lem in using the tools of disorder physics to study the
latter models is that in general no equilibrium distribu-
tion similar to the Gibbs ensemble in physical systems is

available to describe their steady-state behavior. Thus
only systems with specific symmetries [2] or cases which
are essentially equivalent to linear equations [3] have
been solved so far. In this Letter we present solutions to
a prominent model of ecology which lacks the aforemen-
tioned simplifications.

In this model the time development of populations of
diA'erent species is described by a system of so-called
game dynamical differential equations The s. tate of a
population at time t is characterized by a vector of
strategies x=(xi, . . . , xtv) with x; being the fraction of
individuals playing strategy i (x; ~ 0, P;=i x; =N). An

animal adopting a strategy i in a population x receives a
payoA' f;, which in the evolutionary game is identified
with the number of offspring. f; serves as a measure of
success for strategy i.

If the offspring itself will inherit the same strategy the
temporal rate of increase for the fraction of these an-
imals can be set roughly proportional to the payoA' f;
Thus we will describe the time development of the entire

population by the following system of nonlinear dif-
ferential equations:

i =I, . . . , A.
The term N 'gj~ ~xzfz guarantees that the densities x;
remain normalized, i.e., g;-~ x; =N for all times.

Equation (I) is usually referred to as the replicator
equation [4]. It describes the evolution of self-replicating
entities, replicators, in different disciplines of biological
sciences, e.g. , genetics, ecology, prebiotic evolution, and

sociobiology [5,61.
In general, the payoff vector f =(fi, . . . ,ftv ) itself will

depend on the state x. In the following we will study a
simple ansatz,

f;(t) =g (u w))x, (t—) =uN —ux, (t) —g w;, x)(t),

(2)

which nevertheless can yield nontrivial and rich behavior
of the system. The parameter u & 0 describes an average
tendency of the individuals to cooperate [7]. Large
"cooperation pressure" u [8] will favor states where all

replicators are equally likely, whereas for small u only a
few species will survive. wj describes (with w;; =0) the
fluctuations from this average value. Equation (2) can be
regarded as the first terms in a Taylor expansion of f.
We shall incorporate additional rapid environmental fluc-
tuations by adding a noise term csg; (t) to the fitness func-
tion f;:

x;(t) = x;(t) ux;(t)+ g w;, x—&(t)+cr(, (t) —) (t), i =1,
t j=l , N. (3)

For simplicity we assume that g;(t) is a Gaussian white

noise, i.e., (g;(t)(~(t')) =6jh(t —t') and that (3) should

be understood in the Stratonovich [9] sense. The term
k(t) = —N ' gz. —i x;(f; —uN+cr(; ) guarantees proper
normalization.

Investigations of systems with small Ã and o.=0 have
shown that the symmetry properties of the matrix ~;~ are
important for the steady-state behavior of the model.

l Whereas for a symmetric matrix w;~ =wj; a Lyapunov
function exists in the noiseless case (cr =0), allowing only

for fixed point solutions at large times, limit cycles or
even chaotic trajectories [10] may appear in the general
nonsymmetric case.

In the following we are interested in systems where the
number N becomes very large. In this limit it seems nat-
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x(t) = —x(t) ux(t)+rt„, dsK(t, s)x(s)

+e(t)+ a&(t) —t(t) (4)

ural to study a model where the couplings w;1 are taken
as time-independent random quantities. To be specific we
assume that the w;J's are Gaussian random variables with
zero mean and second moments (w~t~) =N
(w;Jwj;) =rtN ', and (w;Jwt, t) 0 if the pairs (ij ) and
(kl) are different. The scaling of the coupling strengths
with N, the number of strategies, keeps the fitness func-
tions f; typically of order 1 for large N.

This ansatz for the couplings in (2) suggests that the
model can be treated by mean-field methods of statistical
physics, which become exact for N ao. Unfortunately
the noise-driven system (3) is not of the standard
Langevin type studied extensively in physics. An integra-
bility condition [11] which would provide us with an ex-
plicit stationary probability distribution is not available in

our case. This is why well-known static methods of sta-
tistical physics such as the replica trick [12] cannot be
applied.

We have to resort to a full dynamical mean-field
theory which provides us with a stochastic single-species
equation of motion. Such an equation is derived by
dynamical functional methods [13] or more intuitively by
means of so-called cavity methods introduced in [14].
Since the derivation of the mean-field equation in our
case resembles much of the corresponding treatment for
the spin-glass problem [13], we merely quote and inter-
pret the result. Assuming that initially, at time t =to, the
ecological system is described by a configuration where
all x's are nonzero [15] and statistically independent of
the w;J's, we obtain (omitting the index i)

In place of the random interactions w;jx~ with the other
species, a retarded self-interaction K(t,s)x(s) appears
together with a Gaussian noise @(t). K(t,s) results from
the "polarization" [14] of all other xJ(t)'s due to the
presence of x;(s) at previous times s (t. It is given by
the functional derivative K(t,s) =(bx(t)/b@(s)) where
A, (t) has to be kept fixed upon differentiation. Causality
requires that K(t,s) =0 for s & t @. is a Gaussian
colored noise with zero mean. It describes the non-

coherent part of the interaction. Its covariance must
be determined self-consistently through (4(t)4(t'))
=(x(t)x(t')). Finally A, (t) has to be adjusted so that the
average of x is normalized to (x (t)) = l.

The appearance of the colored noise together with the
memory makes a general solution of (4) impossible. In
this Letter we present a steady-state solution in the limit
of weak external noise. We expect that at least for a
large enough u and cr=0 the system might approach a
fixed point x; as t Oo. How can such a result emerge
from the single-species equation (4)? A fixed point of
(4) must still be a random variable, displaying the sto-
chastic variation of x; on the number i. We thus try
the ansatz x(t) =x +y(t), for large times t&)tp, where

y(t) is a small deviation from the fixed point x . Like-
wise we set 4(t) =Jq z+v(t), where z is a static Gauss-
ian of unit variance and v is a small dynamic component.
We also make the crucial assumption that for large times
the system will completely lose its memory from the ini-

tial state x(t p
= —~), so that dynamical correlations and

the kernel K(t,s) will only depend on time differences
t —s. If o is small enough so that the system will stay in

the vicinity of the fixed point we will keep terms up to
linear order in y(t) and v(t) in Eq. (4). Neglecting all
effects from transient states we obtain

y(t) —[x +y(t)] ux +x rt~ K(t s)ds X+Jq z ——x u—y(t)+rt K(t s)y(s)ds+v—(t)+erg(t)

(5)

Let us first discuss the case can=0. If the system ap-
proaches the fixed point x for t ~, y(t), v(t) vanish
asymptotically and we obtain x [x (u+ rtKp) —X

+Jq z] =0, with Kp= fp dsK(s). This equation allows
for a positive solution x only if k —Jq z &0 [16]. For
)I,

—Jqz &0 we set x =0. Both solutions are matched
in

malization (x ) =1 we derive the explicit relations

(u+ qKp)'=„Dz(~ —z)',
i/2

u u a
ECO = — +

2g 4g2 g
(7)

x (z) =(u+rtKp) '(X —Jq z)8(k —Jq z), (6)

where 8(x) is the unit step function. The asymptotic
probability density p(x) of the concentrations x of the
species becomes a sum of two terms p~(x ) and pp(x )
where pp(x ) =(1 —a)B(x ) describes a finite fraction
1 —a of species which die out at large times. From (6)
we easily obtain a =f— Dz, where Dz = (2n)
xexp( —

2 z )dz is the normalized Gaussian measure
and 6 X/q

't . Using the self-consistency conditions
(x ) q and Kp =q 't (Bx /Bz) together with the nor-

(u+ rtKp) =Jq ) Dz(A z) . —

Equation (7) can be solved for 5, q, and Kp in the entire
parameter range u & 0 and —1 ~ g ~ 1 exhibiting no
kind of discontinuities. As expected one finds that the
fraction of surviving species is an increasing function of
the cooperation tendency u for each q.

One might question whether the fixed point (6) repre-
sents the generic asymptotic solution of our replicator
system. In fact, recent studies of random network models
(see, e.g. , Refs. [17,18]) with asymmetric (rt=0) cou-
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plings have shown that there the dynamics is typically
chaotic. Though we are not able at present to prove in

which cases our static solution is globally attractive, we
will discuss its local stability by including the small per-
turbations y(t). We begin with the species which become
extinct for large times, i.e., x =0. In this case Eq. (5)
reduces to y(t) =y(t)(A. —Jq z), where the overdot is an
abbreviation for the time derivative. From the previous
assumption, A.

—Jq z (0, we find that fluctuations are in

fact exponentially damped. Note that the external noise

ag(t ) does not afl'ect this result in linear order.
Next we solve for the small oscillations around the pos-

itive components x ) 0 via a Fourier transform of (5),

x (z) [v(ro)+a&(ro)]
ro

iro+ x (z ) [u + iIK(ro) l
'

The self-consistency relation

C(i) =(y(r )y(0)) =(v(r )v(0))

for the power spectrum C(ro) yields

C(ro) =(iy(ro)i')

=0 2 -1
(~iro/x +u+iIK(ro)~ ~)+

(9)

where a threefold average over the dynamic noise terms
v(t) and g(t) together with the static noise z has been
performed. K(ro) =I dt e—'"'K(r ) is determined via
K(ro) =(By(ro)/Bv(co)). The limit of C(co) for small ro

determines the long-time decay of the correlations C(t).
I We find

C(ro) =rr2 —I+ ~ro~xp+(0) ~

Ko a u+2rIKo
1

2Koa
(10)
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FIG. 1. Logarithmic plot of C(co), Eq. (9) for @=0, noise

strength a =0.02, and u =0.72 slightly above the critical value
u, = I/J2. The triangles are obtained from simulations of the
system (3) for the same values of parameters and N =800
species averaged over fifty samples.

This yields a slow decay of the correlations C(r) ~t
for all u & u, =(I/J2)(1+iI), suggesting that at least
trajectories in the vicinity of the fixed point will be at-
tracted by it for u & u, . In fact, numerical solutions of
the replicator system show generic convergence to the
static solution from random initial conditions in this

range of parameters. If u =u, and g & 1 the first term of
C(ro) in (10) vanishes, whereas the second remains finite,

leaving us with a diverging C(co) ee ~ro~
' [19]. The ap-

pearance of this I/f noise signals that the static solution

(6) becomes unstable. This slow relaxation of fluctua-

tions C(ro) is displayed in Fig. I for iI =0, noise strength
cr =0.02, and u =0.72, which is s1ightly above the criti-
cal value u, . For u ( u, and all rI, C(ro =0) as obtained
in (10) would become negative, showing that our solution

cannot be continued to the region u & u, .

This dynamical transition can be related to instabilities
of simpler models for large ecosystems which have been
studied in recent years [20,21]. Such systems were
modeled by linear differential equations with a large ran-
dom matrix. The instability occurs when the real part of
its first eigenvalue becomes negative. To understand the
relationship with our work we linearize the original repli-
cator system (3) around the asymptotic fixed points x,
keeping only the surviving species i = I, . . . , aN (after
renumbering). This yields the linear system

d— y;(t) = —x;, g A~y~(r)+rr&;(r)
df

where A~ =u8~i+wj and y;(I) =x;(r) —x; . Using a
result of Sommers er al [22] on t.he spectrum of large
random matrices with fixed symmetry g we find for the
minimum real part a;„of the eigenvalues of A that
a;„=u —Ja(1+iI). a;„=0 is the value where small
Auctuations are no longer damped. Inserting a = 2,
which is the fraction of surviving species at the transition,
from our dynamical theory we gain the correct value
u =u, =(I/J2)(I+rI) for the critical parameter. With a
proper redefinition of interaction strengths, dimension of
the matrix, etc. , we recover the instability condition ob-
tained in [20,21] from numerical investigations. The
main diA'erence from this work lies in the fact that in

their approach the number aN of (surviving) species was
given and fixed a priori. On the other hand, within the
replicator approach these species are selected dynamiral-

Though our present approach fails to describe the
steady-state behavior of the ecological model for u & u,
we would like to present a few ideas about the behavior in

this region.
The breakdown of our static solution (6) does not ex-
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elude the possibility of other fixed point solutions. In
fact, for @=1, a =0 all trajectories evolve into fixed
points irrespective of the value of u. The failure of our
ansatz to account for such solutions is most probably due
to the assumption of a unique equilibrium state which is
reached independently of the initial conditions. Devia-
tions from such a simple behavior are well known for
complex systems such as the Sherrington-Kirkpatrick
model of spin glasses [23,24]. For large N its phase space
becomes divided into many ergodic components each of
which the system can escape only in times diverging ex-
ponentially with N. In the dynamical approach one has
to account properly [25] for the initial conditions in order
to recover equilibrium results. We expect a similar com-
plex picture to hold for ri=1 and u & u, . This assump-
tion is supported by a calculation of the average number
A' of stable fixed points of Eq. (3) with rl =1 [2,261. For
u & u, we found a single fixed point, which becomes mar-
ginally stable for u =u, . For u & u„an exponentially
large number,

%caber

with y& 0, of marginally stable
fixed points is calculated. Simulations of the replicator
equations in this region show in fact a distribution of
fixed points which asymptotically evolve from different
random initial conditions.

We expect a different picture to be valid if ri is

sufficiently small. For ri=0 and u & u„we got Ãtx'e"
with y & 0, i.e. , no stable fixed poi nt could be found [26].
This fact and preliminary simulations strongly suggest
that similar to the aforementioned network models
[17,18] the ecosystem may now rather end in a chaotic
attractor. This change of behavior would be similar to
the freezing transition in asymmetric random spin models
[18,27,28].

Our results indicate that the replicator model can ex-
hibit an interesting complex behavior. This will be tested
in further work using large-scale computer simulations
together with a new method to treat dynamical mean-
field equations numerically [29].
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