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Ferromagnetism in the Hubbard Models with Degenerate Single-Electron Ground States
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We study a class of Hubbard models in which the corresponding single-electron ground states have
bulk degeneracy. We prove that the ground states of the models exhibit ferromagnetism when the elec-
tron filling factor is not more than and sufficiently close to po=i Vi/2iAi (where ) Vi is the dimension of
degeneracy and iAi is the number of sites), and exhibit paramagnetism when the filling factor is

sufficiently small. This is the first time that a three-dimensional itinerant-electron system is proved to
exhibit ferromagnetism in a finite range of the electron filling factor.

PACS numbers: 75.10.Lp

The derivation of ferromagnetism from a reasonably
fundamental model of itinerant electrons, such as the
Hubbard model [ll, is a challenging problem in theoreti-
cal and mathematical physics. Rigorous examples of fer-
romagnetic ground states in certain Hubbard models
have been obtained by Nagaoka [2], Lieb [3], and Mielke
[4]. Each of these results covers a general class of models
satisfying certain conditions, but works only for a special
value of the electron number. Recently Mielke has ex-
tended his results to a finite range of the filling factor in

two-dimensional models [5].
In the present Letter, we study a class of Hubbard

models in which the corresponding single-electron ground
states have bulk degeneracy (as in the Mielke's models

[4,5]). We prove that the (many-electron) ground states
exhibit ferromagnetism when the electron filling factor is

not more than and sufficiently close to po=iVi/2iAi
(where

i Vi is the dimension of degeneracy and iAi is the
number of sites in the lattice), and exhibit parainagne-
tism when the filling factor is sufficiently small. As far as
we know, this is the first time that a three-dimensional
itinerant-electron system is proved to exhibit ferromagne-
tism in a finite range of the electron filling factor.

Our results indicate that there is a mechanism generat-
ed by electron interactions which selects ferromagnetic
states as ground states. The mechanism is most clearly
seen in Eq. (14) where the Hamiltonian for the Coulomb
interaction, represented in a certain nonorthogonal basis,

i

is reduced to that of the ferromagnetic Heisenberg model.
This can be regarded as a rigorous example of exchange
interactions which are ferromagnetic. The selection
mechanism works most eA'ectively when the degenerate
single-electron states are nearly "saturated, " but becomes
ines'ective when the electron density is too small. Al-

though the models treated in the present paper are still

artificial, we expect that such a selection mechanism gen-
erally takes place in a Hubbard model with a large densi-

ty of states at the bottom of the (single-electron) energy
band, provided that a certain saturation condition is

satisfied and the Coulomb interaction is sufficiently large.
We hope that the present examples shed light on mecha-
nisms of the actual ferromagnetism observed in, e.g. ,

transient metals [6].
Here we describe our results for the simplest class of

models. Generalizations and some technical details of the
proofs will appear elsewhere [7].

Consider the d-dimensional hypercubic lattice with

periodic boundary conditions [8]. We denote by V the
(ordered) set of sites (denoted as u, v, w, . . . ) and by 8
the set of bonds (i.e., unoriented pairs of neighboring
sites) in the lattice. For each bond [v, wj in 8, we denote

by m(v, w) the point taken in the middle of the sites v

and w. M is the set of m (v, w) for all the bonds in 8.
We consider the Hubbard model [9] on the decorated

lattice A = V U M with the Hamiltonian H =Hh p+ 0'
where

t t
Hhop ~ ~ t(C +taC +wa( mt( Cw)t)(av C+ aC+waX m( C)t)w, aHint , U ~ nufnul+U Z nxfnxl

a-t, l fv, wI ea MGV xGM

with t &0, k &0, U&0, and U'&0 (see Fig. I). As usu-

al c,c, and n„=c~~ are the creation, the annihila-
tion, and the number operators, respectively, of an elec-
tron at site x (in A) with spin tT. The total electron num-

ber operator is Iti, =gx~A(n„f+n„l),and the electron
filling factor is p=N, /2iAi. (In general iXi denotes the
number of sites in a lattice X. ) We define the spin opera-
tors by S„+=c„fc„i,S„=(S„+)t, S„=(n,f —n„l)/2.
The square of the total spin operator is given by
(S...)'=g, ,, „[(S.'S, +S.-S,')/2+S,'S,3[.

The single-electron eigenstate [v ]„~A corresponding

to Hh p is determined by the Schrodinger equation

HhopZVxcxA 0 SMVxcxA 0 ~

where @0 is the vacuum state. In the present model, the
minimum eigenvalue of (2) is @=0, and the correspond-
ing eigenfunctions (single-electron ground states) are
characterized by the property that p„+p +X& ~,, i =0
for all [v, w] E B. We shall construct a complete (but not
orthonormal) basis of the eigenspace with a=0, which
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dicated by the subscript 0). By choosing a suitable (di-
mensionless) chemical potential p in (4), we recover
zero-temperature properties of the system with a desired
electron filling factor [10]. In the limit p ~, the filling
factor takes the maximum value po =

i Vi/2iAi. Our main
results are the following.

Theorem l.—In the dimensions d ) 2, there are finite
constants c,c',pf, pz (with pf )0) p2) which depend
only on d and not on the size of the lattice. For any
p ~ pt, we have

FIG. 1. The decorated square lattice. The hopping matrix
elements are given by t„~ t for a black line, t„„=X,t for a gray
line, t„„=41for a site x of the square lattice, and t„„=X,t for a
site x at the middle of a bond, where t, i.)0. The on-site
Coulomb repulsion is nonvanishing for any site. It is proved
that the ground states exhibit ferromagnetism when the elec-
tron filling factor p is not more than and sufficiently close to

po 6, and exhibit paramagnetism when p is sufficiently small.

(0)„=Tro[0 exp(pN, )]/Tro[ex p(pN, )], (4)

where 0 is an arbitrary operator, and the trace is taken
over all the (many-electron) states with H@=0 (as is in-

turns out to be iVi dimensional. For each u 6 V, we

define a single-electron state 4„"]„cAby p„"=1 if
x =u, p(") = —I/X if x=m(u, v) for some v, and p(") =0
for other x. We define the corresponding creation opera-
tor by a„=+„pf")c„.Note that the locality of our
basis states does not imply that the electrons are local-
ized, since one can always take extended basis states with

definite crystal momenta. In [7] we show that the coher-
ence length of the model can become much larger than
the lattice spacing.

Let A be an arbitrary subset (sublattice) of V which is
not necessarily connected. The state (with iA i electrons)

@A f II au f @0 (3)
MBA

clearly satisfies Hh, ~@~f =0, where 0 is the minimum

possible eigenvalue of Hf„~. The Pauli principle implies
that state (3) has no site with two electrons, and thus
satisfies H;„tN~t =0, where 0 is again the minimum possi-
ble eigenvalue of H;„t. We see that the ferromagnetic
state @~f is an exact ground state of the full Hubbard
Hamiltonian H. Such construction of a ferromagnetic
ground state may be standard, but it does not lead to any
strong conclusions about the magnetism of the system
since there may be (and are) many other ground states.

From the above construction (3), we have found that
the ground-state energy of H is 0 for the electron num-

bers N, ( iVi. We shall investigate the properties of the
ground states of H when this condition is satisfied. Em-
ploying the standard grand canonical formalism, we
define

S „(S,„+1))((S„,) )„)S,„(S,„+1)(1 —ce "),
(s)

where S~,„=
i Vi/2. For any p ~ p2, we have

—,
' (N, )„(((S...)')„(,' (N, )„+c—'iVie"

The theorem establishes that the ground states of our
Hubbard model exhibit ferromagnetism when the filling
factor is not more than and sufficiently close to po, and
paramagnetism when the filling factor is sufliciently
small. We expect that, in three (and higher) dimensions,
the ferromagnetism persists at finite temperatures [11].
When p (~ the ground-state energy does not change
under small variation of the filling factor, i.e., the charge
gap is vanishing. Although one might expect that the
present models are ferromagnetic metals, we note that the
vanishing charge gap is necessary but not sufficient for an
electron system to be a conductor. See [7] for further
discussions on this point.

Recall that the standard mean-field (or the Hartree-
Fock) approximation [1] predicts the existence of only
the ferromagnetic ground states whenever DF (the
single-electron density of states at the Fermi level) is

large. We have large (actually infinite) DF for p(po,
but Theorem 1 tells us that it is not enough to guarantee
the appearance of ferromagnetism. For selection of fer-
romagnetic states to take place, the degenerate single-
electron band must be nearly "saturated" in the sense
that p(po. We expect that this feature is universal in

the Hubbard models with large single-electron density of
states [12].

The proof of Theorem 1 is based on complete charac-
terization of the ground states for N, ( i Vi. Let us begin
by constructing ground states other than (3). A sublat-
tice A (of V) can be uniquely decomposed into a disjoint
union of connected components as 2 =C|U. . . UC„
where all the sites in each Al, are connected via (paths of)
bonds in B. Note that, in the ground state (3), electrons
on different connected components may be regarded as
not interacting with each other (Of co.urse this is a
basis-dependent observation, and should not be taken
literally. ) For each k (= I, . . . , n), let Ai, be a subset of
A obtained by adding to Ak the sites in M which are
nearest neighbors of sites in Ak. It is not hard to show
that the state
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H X~. ct tcv j l™I aut I I au j +0.
k=l xeA„ , u CA, u&t ,u EA', u/t

with m), =0, 1, . . . , ICk I is also a ground state of H A. l-

though state (7) is not an eigenstate of (S„&),one can
construct eigenstates by taking suitable linear cornbina-
tions. One finds [7] that there even appear spin-singlet
ground states when IVI N,—is at least of order I
(where I is the linear size of the lattice). See Ref. [4] for
related results.

The following theorem provides the desired complete
characterization of the ground states. Mielke [5] also
gave a similar complete characterization of the ground
states in Hubbard models on two-dimensional line graphs.

Theorem 2.—Any state 4 with HA=0 is a linear com-
bination of the states (7) with various A and Im), ].

As a special case of Theorem 2, one finds that the
ground states have maximum possible spin and are non-

degenerate (apart from the trivial spin degeneracy) when

1V, = I VI, i.e., the degenerate single-electron ground states
are perfectly "saturated. " This fact can be proved for a
general class of models including the present one [7].
Mielke [4] proved the same fact for a general class of
Hubbard models on line graphs.

The proof of Theorem 1 is based on Theorem 2. We
shall leave the complete proof to [7], and briefly discuss
the basic idea. By using (7) we can express the expecta-
tion value of the square of the total spin as

((S...)')„=—g W(A) gl + 1 , (8)
Z AcV k=1

where W(A) =ri)", -i e" " (ICk 1+1), Z =Z~. vtV(A).
and the sum is over all the subsets A of V. Representa-
tion (8) can be regarded as describing a kind of (interact-
ing) percolation problem on the lattice V, in which the
subset A corresponds to the configuration of "occupied"
sites. The probability that a configuration A appears is

proportional to W(A). By employing suitable stochastic
geometric techniques [7], we can control the percolation
problem in certain regions of the parameter p. For
sufficiently large p, it is shown that the occupied sites
form a large percolating cluster. Then the representation
(8) implies that this cluster carries a bulk magnetic mo-

ment. For sufficiently small p, the occupied sites do not

percolate any more, and (8) implies a paramagnetic be-
havior.

Proof of Theorem 2.—Note that any state @ with

HhppC 0 is a linear combination of the basis states

rr ..', rr ..', ~. , (9)
g CA uEA'

where A, A' are arbitrary subsets of V. When N further
satisfies H;„i@=0, a basis state (9) which has nonvanish-

ing contribution to N cannot have a common element in

A and A'. To see this assume that v appears in both A

and A'. Then we see that the basis state (9) with A, A'

contains a nonvanishing component
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To get H;„t+=0, the state @ cannot contain such a term
with a doubly occupied site. Since it is impossible to can-
cel this term with the basis states (9) with other A, A',

the conclusion follows.
Thus we see that any N with H@=0 is decomposed as

&P=g~&v@~ where each il&z (with A being a subset of
V) is a linear combination of the basis states

( )@o ~

uCA

r, i —2
nxtnxj@A, a Sgn~&', Wlk Cxo(t )Cxa(w)

u 6A, u&t, ~
au+(u) +0

where sgn(v, w) is the fermionic sign we get by bringing
i, w in front. Because of the linear independency of the
single-electron states a„,we have a unique expansion

~ (x) t +h (x) f'

uE. v
(12)

where b is the creation operator for a single-electron
state orthogonal to the space with Hh, p=0. Consider the
one-to-one map V V generated by the reAection with

respect to the hyperplane including x and orthogonal to
the bond [v, wJ. Since the expansion (12) must be invari-
ant under the map, we see that the coefficients in (12)
satisfy K,,

" =)r„,and hence the (reflection) positivity
[13] K =). ir ii & 0

By substituting the expansion (12) into (11) and apply-
ing the projection PA, we find

where a "spin configuration" cr= Io(u)]„~~ is a collec-
tion of spin indices o(u) =t, ). We further claim that
each 4A satisfies H+A =0, i.e., is itself a ground state.
To see this assume that, for some NA and x E M, we have

n~(n~(4&&0. Let [v, w] be the unique bond in 8 such
that x=m(v, w). Then 4~ must have a nonvanishing
component c~tczjg gp g A g&t cy~(g)@o. For the linear
combination 4 to become a ground state, such a com-
ponent must be canceled by other 4A with A'&A, but
this is impossible.

Therefore, to prove Theorem 2, it suffices to show that
any ground state +A which is a linear combination of the
basis states (10) with a fixed A can be decomposed into a
linear combination of the ground states (7). Let us define
the projection operator onto the space spanned by (10).
Given an arbitrary (many-electron) state 4', we first per-
form a standard orthogonal projection onto the space
with Hh, p=0. We expand the resulting state in the basis
(9), and then throw away all the basis states not in (10).
We write the resulting state as PA%'.

Let x 6 M, and take the bond jv, wj as the above. By
applying the operator n„(n„(onto the basis state (10), we

get
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r
PAnx lnxt@A, a Sgn(v )v )I(' (ava(v)awa(w) +awa(v)ar a(w) ) Vl aua(u)@0 =ft (@A,a @A,E„a)

u 6A, uWv, w
(13)

where E„cris a spin configuration obtained from o by
exchanging o(v) and o(w). By summing up (13), we get

~~HInt@~, a =U'&
v, )4t 6 A, )v, wl C B

(14)
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