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Pulse-Shape-Controlled Tunneling in a Laser Field
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It is shown that appropriately shaped smooth pulses of an external oscillating force lead to population
transfer in a bistable quantum system on a time scale that can be orders of magnitude shorter than the
bare tunneling time. Those pulse shapes for which this phenomenon is achieved can accurately be deter-
mined from a tunneling functional h, T which is constructed explicitly.

PACS numbers: 73.40.Gk, 03.65.—w, 82.90.+j

The problem of tunneling through the barrier of a dou-
ble well in the presence of an external ac field has re-
ceived a considerable amount of attention recently [1-4].
It is of great practical importance in several areas of
physics, e.g. , in solid-state physics in the study of tunnel-
ing phenomena in periodically driven semiconductor het-
erostructures, or in the attempt to control a chemical re-
action by laser pulses in chemical physics. However, the
majority of previous investigations remained restricted to
a constant amplitude of the driving force. In a number of
important cases, the physical situation is diA'erent: For
instance, the study of nonperturbative phenomena in the
dynamics of molecules interacting with laser fields may
require field strengths that cannot be obtained with a cw
laser, and it is indispensable to work with very short laser
pulses if it is necessary to beat fast molecular processes
such as the redistribution of vibrational energy [5].

This Letter addresses the theoretical description of the
tunneling process for a particle in a bistable potential
which is subjected to an oscillating force with an ampli-
tude that changes smoothly in time. It will be shown that
carefully shaping the pulses opens a new possibility of
controlling the tunneling process: Because the quantum
dynamics remains very regular even for high driving am-
plitude, there is a systematic way of designing pulses such
that practically complete population transfer in a bistable
potential is achieved in times which can be orders of mag-
nitude shorter than the tunneling time of the undriven

system, and there is a functional of the pulse shape which
accurately describes this phenomenon. This functional, in

turn, allows the theoretical prediction of the parameters
of optimal pulses. Thus, it can serve as a further tool in

the field of laser-assisted molecular control [6-8].
A paradigmatic model for the situation under discus-

sion is provided by a particle in a quartic double-well po-
tential which is driven by a classical oscillating force.
Adopting the notation of Grossmann et al. [3,4], the

t

Hamiltonian of this system may be expressed in dimen-

sionless units to read

v ~(x):= [v )(x) ~v2(x)]1

2
(2)

are functions "localized" in the left or right well, respec-
tively. If one chooses the initial condition tlt(x, t =0)
=p+(x), the wave function evolves in time as

tlt(x, t) = e
' "[v )(x)+v2(x)e ' ' '"], (3)

2

and after the "tunneling time"

&b'
z

E2 —E] ' (4)

both components of the wave function have acquired a
relative factor of —1: A particle initially localized in one
of the wells has tunneled into the other.

The task now is to transfer this simple picture to the
case where there is a driving force X(t)xsintot. For very

strong driving fields, a theoretical analysis in terms of un-

perturbed double-well eigenstates and their energies obvi-
ously is no longer sensible. But for arbitrarily high con-
stant driving amplitudes A, , there are Floquet states
u,"(x,t) and quasienergies e," defined by the eigenvalue
equation

p 1 1
H(p, x, t) = ——x + x +7 (t)xsintot. (1)

2 4 64D

In the absence of the driving force, D determines the
number of double-well eigenstates with negative energy.
For the present study, the value D=2.5 has been em-

ployed which means that three pairs of states fa11 "below"
the barrier.

If Et and E2 denote the energies of the two lowest
double-well eigenstates p&(x) and pi(x), the quantum
mechanics of the tunneling process in the undriven double
well can be formulated in well-known, simple terms: The
linear combinations

——x + x +7xsincot it), u. (x, t) = ue. ( , x)—,t2 1 4

2 gx2 4 64D
(5)

with periodic boundary conditions in time: u, (x, t) =u, (x, t 2+/ tr)c.oThese Floquet states are true stationary states of
periodically time-dependent quantum systems [9]. They can be determined by generalized Bohr- Sommerfeld quantiza-
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y(x, r) = 1
f l

u 'exp —i e ' dt'
I 4 0

tion rules [10] if the classical phase space is regular, and
they obey an adiabatic principle [11-13]:If the system is
initially prepared in a Floquet state and if the parameters
of the Hamiltonian are then varied suSciently slowly, the
system remains in the Floquet state connected to the ini-
tial one. In other words, if the quasienergies are con-
sidered as functions of the parameters, they form
quasienergy surfaces on which the Floquet states evolve
in a Born-Oppenheimer like fashion.

This statement is by no means trivial: If e„ is an eigen-
value of Eq. (5), so is z„+mro for every (positive or nega-
tive) integer in. Hence, each of the (infinitely many)
eigenstates of the unperturbed double well leads to a
quasienergy eigenvalue in the "first Brillouin zone"
—rt)/2 (s (+ ro/2: The quasienergy spectrum is dense.
This fact, in turn, implies that the usual gap condition of
the standard adiabatic theorems has to be replaced by a
condition on the ineffectiveness of resonances [14].

Such a technically difficult modification of the adiabat-
ic theorem guarantees the adiabatic response to a change
of the amplitude A, which takes place on a time scale that
is long compared to the period T=2z/ roof the external
oscillating force. Hence, when the field is turned on, the
initial double-well eigenstates y; evolve into the "connect-
ed" Floquet states u; with phase factors which are deter-
mined by the quasienergies, and the initial wave function

y(x, t =0) =(p+(x) is shifted into

of the undriven system.
In the following, the viability of this mechanism will be

demonstrated for a frequency ro 1.5. This frequency is
of the order of the spacing between the lowest two pairs
of double-well eigenstates; the spacing between the lowest
two states is much smaller: D =2.5 amounts to
F2 Ei =—I 507x10; the bare tunneling time (4) is
2.085x10 =49766T with T=2rr/co. Thus, in the ab-
sence of the driving field, the tunneling time is equivalent
to roughly 5&10 cycles.

Figure 1 shows a plot of the logarithm of the absolute
value of the numerically determined difference between
the instantaneous quasienergies e2 and ai. In the pertur-
bative regime, the quasienergies approach each other and
actually cross, but for high driving strength their
difference increases strongly such that for A, I it is more
than 3 orders of magnitude larger than for k 0.
Whereas the quasienergy crossing is associated with the
"coherent destruction of tunneling" [3,4], the large
quasienergy difference in the strong field regime leads to
comparatively short tunneling times. Intuitively speak-
ing, such a large quasienergy difference indicates that the
Floquet states originating from the lowest two double-
well eigenstates acquire admixtures from excited states
which have energies closer to the top of the barrier and,
therefore, tunnel faster.

The crucial point now is the direct verification of Eq.
(8). Two things are needed: On the one hand, the time-
dependent Schrodinger equation has to be solved with ini-
tial condition iir(x, t =0) =p+(x) for given pulses A. (t);
on the other hand, the corresponding phase integrals (7)

+u" ' exp —i c ' dt'2 4 0 2 (6)

Accordingly, under the influence of a smooth pulse k(r )
which starts from A, =O at t =0, reaches a maximal
strength )t,„, and decreases back to A, =O after a total
pulse time tp, both parts of the wave function acquire a
relative phase

d&( ).(i) i,(t)) (7)

during the course of the pulse, and if the conditions are
such that

i)r (t~) =ir(2n+ I ), n =0, ~ 1, ~ 2, ~ 3, . . . , (8)

can be much shorter than the "bare" tunneling time (4)

the total relative phase factor is —1: The initial wave
function p+(x) has (up to an irrelevant overall phase fac-
tor) evolved into p-(x), and the pulse has forced the par-
ticle to tunnel through the barrier. Such a mechanism
has a further, possibly attractive feature: Provided the
quasienergy difference e2 —

e& becomes larger than the
original tunnel splitting E2 —E~, the actual tunneling
time r, which now has to be defined by

3

to

I

—4

bD0

—6
0

I

.4

FIG. 1. Logarithm of the absolute value of the quasienergy
diff'erenee )Q —si ~/r0 for the system (5) with D 2.5 and
co 1.5. Note that for A, 1 this difference is more than 3 or-
ders of magnitude larger than for A, 0; the singularity near

0.05 indicates a crossing.
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have to be evaluated. A convenient choice is

O~t ~tp, (10)

.4 .6

/
/

?

4-

0'
0

FIG. 2. Upper half: Tunneling functional AT (absolute
value, in units of /t) evaluated for pulses {10)with a/=1. 5 and

t/, =500x2/tltu. Predicted maximal amplitudes X. ,„ for com-
plete population transfer are indicated. Lower half: Tunneling
probability i&w —i//t(t~)1 I2 plotted as function of A. „,as calcu-
lated from numerical solutions of the Schrodinger equation.

but it is clear that any other smooth pulse would do
equally well.

The lower half of Fig. 2 shows the tunneling probabili-
ty i(g —itlt(tt, ))i for such pulses (10) with a fixed length
of t~ =500T as a function of X,„, whereas the upper half
shows the tunneling phase AT. In view of the simple line
of reasoning, the agreement of the numerical result with
the adiabatic theory could hardly be any better. Precisely
as predicted by Eq. (8), a population transfer p+
occurs when hT becomes equal to an odd multiple of z,
although in the present example the pulse length t~ is 2
orders of magnitude shorter than the bare tunneling time
Tb.

But the most important fact is that Eq. (8) can be em-

ployed to "design" optimal pulses for laser-assisted tun-

neling. From the definition (7) it is obvious that AT actu-
ally is a functional of the pulse shape A. (t), and once the
instantaneous quasienergies a1, e2 have been calculated
(or determined experimentally) in the range 0 (X

~ l,„, this functional can easily be evaluated for arbi-
trary smooth pulse shapes. The requirement

AT[X(t)] =tr

then determines those pulses which lead to complete pop-
ulation transfer with a minimal driving strength [i.e.,
n=0 in Eq. (8)]. In fact, pulses characterized by (11)
can be interpreted as generalizations of the familiar "z
pulses" for two-level systems [15]; the condition (11) re-

places the usual "area theorem. " From a practical point
of view, it is important that this condition is not very re-
strictive: One can specify a suitable pulse length t~ in the
adiabatic regime and work with smooth (e.g. , Gaussian)
envelopes that can be realized without much effort in an

actual experiment.
It is instructive to compare the tunneling functional AT

with the functional A,y which has recently been developed
to describe the selective excitation of molecular vibration-
al states [16,17]. Although both functionals appear very

similar, there is a significant diA'erence: In the case of
selective excitation, an initially resonant state is split into
a superposition of two Floquet states which then evolve

separately on their own quasienergy surfaces until they
interfere at the end of the laser pulse. In the present case
of laser-assisted tunneling in a symmetric double well,

there is no "splitting and interference, " but both com-
ponents of the initial wave function p+(x) evolve in-

dependently (to the extent that the adiabatic approxima-
tion is valid) and never interact during the whole pulse.
(In fact, in the present example both components even

evolve in sectors of diff'erent symmetry: For fixed k, the
quasienergy operator is invariant under the combined
operation x —x and t t+ T/2; and for F. 2

—F. /
& c//

the instantaneous Floquet states ui and u2 have diferent
parity under this operation. This fact also allows the
quasienergies st and s2 to cross. )

It should be emphasized that the mechanism for pulse-
shape-controlled population transfer in a bistable quan-
tum system is quite general. As long as the relevant
quasienergies do not show "reactive" avoided crossings
where Landau-Zener transitions occur with notable prob-
ability [13], the dynamics is simply that of a two-level

system in the slowly moving frame of reference which is

provided by the instantaneous Floquet states ui ' and
t(i)

In conclusion, it has been shown that the tunneling pro-
cess of a particle in a symmetric bistable potential can
eIIiciently be controlled by the shape of a pulse of an

external periodic force. Theoretically speaking, the key
point is the manipulation of the relative phase between
two adiabatically moving components of the wave func-
tion; from a practical point of view it is important that
this can be done by pulses with smooth envelopes. Practi-
cally complete population transfer is possible on time
scales which are orders of magnitude shorter than the
bare tunneling time, and the shape of those pulses that
achieve this phenomenon can be theoretically predicted

by the tunneling functional h, T. It would be of interest to
investigate the eAect of strong laser pulses on the tun-

neling eff'ect in "engineered" semiconductor double-
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quantum-well structures [l8]. However, a more impor-
tant application of the mechanism outlined in this Letter
may be found in the laser-assisted study of molecular dy-
namics [5-8,19]: The present results indicate that
specifically designed smooth laser pulses can overcome
potential barriers in a systematic and controllable
manner.

It is a pleasure to thank S. J. Allen and M. S. Sherwin
for carefully reading the manuscript and G. Ahlers for
kind hospitality at UCSB's Center for Nonlinear Science.
I also acknowledge, with thanks, a Feodor Lynen Fellow-
ship from the Alexander von Humboldt-Stiftung.

[1] W. A. Lin and L. E. Ballentine, Phys. Rev. Lett. 65, 2927
(1990);67, 159 (1991).

[2] A. Peres, Phys. Rev. Lett. 67, 158 (1991).
[3] F. Grossmann, T. Dittrich, P. Jung, and P. Hanggi, Phys.

Rev. Lett. 67, 516 (1991).
[4] F. Grossmann, P. Jung, T. Dittrich, and P. Hanggi, Z.

Phys. B 84, 315 (1991).
[5] J. E. Combariza, B. Just, J. Manz, and G. K. Paramonov,

J. Phys. Chem. 95, 10351 (1991).
[6] S. Shi and H. Rabitz, J. Chem. Phys. 92, 364 (1990).
[7] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys.

Rev. Lett. 65, 2355 (1990).
[8] R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500

(1992).

[91 For a review, see S. l. Chu, Adv. Chem. Phys. 73, 739
(1989).

[10] H. P. Breuer and M. Holthaus, Ann. Phys. (N. Y.) 211,
249 (1991).

[11]M. V. Kuz'min and V. N. Sazonov, Zh. Eksp. Teor. Fiz.
79, 1759 (1980) [Sov. Phys. JETP 52, 889 (1981)].

[12] T. S. Ho and S. 1. Chu, Chem. Phys. Lett. 141, 315
(1987).

[13] H. P. Breuer, K. Dietz, and M. Holthaus, in Proceedings
of the International Conference on Coherent Radiation
Processes in Strong Fields, 8'ashington, DC, l8-22 June
l990, edited by V. L. Jacobs (Gordon and Breach, New
York, 1992).

[14] J. E. Avron, J. S. Howland, and B. Simon, Commun.
Math. Phys. 128, 497 (1990).

[15] L. Allen and J. H. Eberly, Optica! Resonances in Two
Level Atoms (Dover, New York, 1975).

[16] H. P. Breuer, K. Dietz, and M. Holthaus, J. Phys. B 24,
1343 (1991).

[17] H. P. Breuer, K. Dietz, and M. Holthaus, Phys. Rev. A
45, 550 (1992).

[18] K. Leo, J. Shah, E. O. Gobel, T. C. Damen, S. Schmitt-
Rink, W. Schafer, and K. Kohler, Phys. Rev. Lett. 66,
201 (1991).

[19]J. E. Combariza, C. Daniel, B. Just, E. Kades, E. Kolba,
J. Manz, W. Malisch, G. K. Paramonov, and B. War-
muth, in "Isotope EA'ects in Chemical Reactions and Pho-
todissociation Processes, " edited by J. A. Kaye, ACS
Symposium Series (American Chemical Society, Wash-
ington, DC, to be published).

1599


