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Zero-Dimensional States and Single Electron Charging in Quantum Dots
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We observe new transport effects in lateral quantum dots where zero-dimensional (OD) states and sin-
gle electron charging coexist. In linear transport we see coherent resonant tunneling, described by a
Landauer formula despite the many-body charging interaction. In the nonlinear regime, Coulomb oscil-
lations of a qunatum dot with about 25 electrons show structure due to OD excited states as the bias volt-
age increases, and the current-voltage characteristic has a double-staircase shape.

PACS numbers: 73.20.Dx, 72.20.My, 73.40.Gk

Transport through semiconductor quantum dots shows

striking effects due to the electron wave nature and its
finite charge. The first leads to the formation of zero-
dimensional (OD) states with discrete energies in a sys-
tem confined in all three directions [1,2], and the possibil-

ity of coherent resonant tunneling [2], as with photons in

a Fabry-Perot cavity. The latter induces Coulomb ef-
fects, which cause a strong shift in the dot energy upon
addition of a single electron [3].

Experiments are beginning to be done on quantum dots
where these effects coexist. McEuen et al. [4] used trans-
port measurements to determine the magnetic field

dependence of ¹lectron ground-state energies in such a
system, and related it to the calculated energies of
single-particle levels in the absence of charging. Similar
issues have been addressed in double barrier resonant
tunneling structures [5], and using capacitive [6] and op-
tical [7] techniques. Here we report new results from
dots where OD states and charging coexist. We observe
coherent resonant tunneling in the linear regime (low bias
voltage), surprisingly well described by a Landauer for-
mula (until now applied only to noninteracting systems)
despite the electronic Coulomb repulsion. We also see
the signature of combined OD states and charging in non-

linear transport. The current-voltage characteristic has a
double-staircase shape, and we can measure the tunnel

spectroscopy of the excitations of a quantum dot contain-
ing about 25 electrons.

The two quantum dots of this work are defined by met-
al gates on top of a GaAs/A1GaAs heterostructure with a
two-dimensional electron gas (2DEG) 100 nm below the
surface. The ungated 2DEG has mobility 230 m /Vs,

and electron density 1.9x lois m-z at 4.2 K. Applying—300 mV to the gates depletes the 2DEG under them,
making a quantum dot coupled to large reservoirs via
barriers at the center of two quantum point contacts
(QPCs). Making the voltage on the QPC gates more
negative (positive) decreases (increases) the barrier
transmissions. The inset of Fig. I gives the geometry of
dot 1, with pattern size 0.8 pm&&1 pm. The "finger" gate
F forms one side of the dot, while QPC gates 1 and 2, and
center gate C form the other side. With depletion, we ex-
pect this dot to be circular with a diameter of about 0.6
pm. The inset of Fig. 3 shows the layout for sample 2,
with QPC gate pairs 1 and 2, and center gate pair C.
The central region is 0.2 pm&&0. 6 pm. For this sample,
we apply a more negative voltage to the center gates (typ-
ically —900 mV), enhancing the depletion region around
them. The dot is again circular, but now with diameter
0.1 pm. Measurements were done in a dilution refrigera-
tor at its base temperature below 20 mK.

We took data on sample 1 in a magnetic field of 7 T,
when transport through the dot is via the lowest-energy
edge channel, lying along the dot circumference, and is
essentially one dimensional [2,8]. If a quantum particle
of proper energy moves between two barriers without loss
of phase memory, coherent resonant tunneling occurs
through a OD state formed by constructive interference of
multiply refiected partial waves. As in an optical Fabry-
Perot cavity, the transmission probability can approach 1,
even if each barrier alone is highly reflecting. At zero
temperature in one dimension and in the absence of
charging effects, the conductance of this interferometer is
given by a Landauer formula [2]:

2 T]T2

h I+ (1 —Ti )(I —Tq) —2[(1 —
Ti ) (1 —T2)] ' cosy

T) and T2 are the barrier transmissions, and p is the phase acquired by a wave in one round trip between the barriers.
Finite temperature leads to energy averaging by the derivative of the Fermi function, reducing the peak transmission.
Biittiker [9] has described the transition from coherent to incoherent (sequential) tunneling using the Landauer-Biittiker
formalism.

Figure 1(a) shows the conductance G of dot 1 as a function of voltage Vi on QPC gate 1, when V2 is set so QPCz has
transmission T2=1, and gates F and C are formed. Transport at B =7 T is adiabatic over distances much larger than

1592 1992 The American Physical Society



VOLUME 69, NUMBER 10 PHYSICAL REVIEW LETTERS 7 SEPTEMBER 1992

0.6—
(a)

04-

0.2-

0z
P 2 — (b)

z
G

0.1—

the dot size, so G measures Ti. G = Tie /h. When V2 is

more negative, so QPC2 is a tunnel barrier (T2=0.02),
sweeping V~ gives the periodic conductance peaks of Fig.
1(b). These are the Coulomb oscillations [3] of the
charging regime, caused by sweeping a gate voltage that
is capacitively coupled to the dot. In contrast to the usual

experiments, here sweeping V~ simultaneously changes
T~, the transmission of QPC~. The peak height of the os-
cillations shows a dramatic modulation, correlated with

T~ [Fig. 1(a)], but in a nonclassical manner. Near
Vi —770 and —850 mV, for example, the peak con
ductance is strongly suppressed, even though T~ is at a
maximum of 0.6. The classical, one-dimensional sequen-
tial tunneling prediction for the conductance maxima
is shown by the dashed line in Fig. 1(b): G,~=(e /
h) T ~ T2/(T ~+ T2 —T i T2). The actual conductance
peaks exceed this prediction by as much as a factor of 15.

In contrast, the peak conductance (cosy=1) predicted
by the quantum formula (1) agrees well with the data,
when thermal averaging of about 50 mK is included [Fig.
1(b), heavy line], in line with the temperature and bias
voltage (5 pV) of the experiment. In Eq. (1), T~ and T2
must match to have total transmission well above the
sequential value. Since Tz= 0.02 in Fig. 1(b), increasing
the transmission of QPC~ above 0.02 reduces the total
transmission predicted by Eq. (1), just as in the data.

This is the first demonstration that coherent transport
described by an independent-electron Landauer formula
occurs despite the many-body charging interaction. Al-
though initially surprising, this result is in agreement
with the idea that transport in the linear regime occurs
when the electrochemical potential of the dot is equal to
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FIG. 1. (a) Conductance of QPC~ vs gate voltage V~ for dot
1. V2 is set so T2 1. (b) Coulomb oscillations of dot 1 as V~ is

swept. T2 is about 0.02. The maximum peak height calculated
with Eq. (1) at a temperature of 50 mK is shown by the heavy
line. The dashed line is the classical prediction. The magnetic
field is 7 T. Inset: Gate geometry for dot 1.

that of the reservoirs [10]. Transport of the Nth electron
is an energy-conserving process, where phase coherence is
maintained even though the other N —I electrons experi-
ence a Coulomb energy change. Meir and Wingreen [11]
have recently developed a Landauer-type formula for in-
teracting systems.

Along with coherent resonant tunneling in the linear
regime, combined OD states and charging lead to novel
nonlinear transport effects, clearly shown in experiments
on the smaller dot 2. If a set of OD states of energy
E ~,E2, . . . coexists with charging, the dot's electrochemi-
cal potential changes discontinuously as the number of
electrons increases: pd(N+1) —pd(N) =Ec+bE [10].
Here Ec =e /C is the electrostatic energy cost of charg-
ing the quantum dot by one electron (C is the total ca-
pacitance from the dot to ground), and bE =Erv+~ —E~
is the energy between OD states, also the minimum ener-

gy needed to excite the N-electron ground state. With di-
ameter d 0.1 pm, dot 2 contains about N =25 electrons
at the bulk density. We estimate the charging energy
Ec =e /C = e /4a„sod =3.5 meV, where a, 13 for
GaAs, and excitation energy bE =EF/N =300 peV.
Both energies far exceed ksT at 20 mK. Although we
refer here to separate charging and OD state energies of
an independent (uncorrelated) electron system, the con-
cepts can be generalized: A correlated system also has a
change in electrochemical potential upon adding one elec-
tron and a minimum excitation energy at a axed number
of electrons, the analogs of Ec+bE and bE, respectively.

Calculations exist for nonlinear transport [12], but the
dot potential energy landscape of Fig. 2(a) gives us a
qualitative understanding. At zero temperature, states of
the left (right) reservoir are fully occupied up to pL
(pR) and empty at higher energies. Solid lines in the dot
show p~ (N) and pq (N+ I ) characterizing the N- and
(N+I)-electron ground states, while dashed lines are
discrete OD excited states of the dot. Suppose 0(pL

pg & pg(N+ I ) —pd(N), so at most one charge level
lies between pL and pR. When the transport condition

pL & pq(N) & p~ is satisfied, current Ilows as electrons
tunnel one by one from left to right via states in the dot
with energy between pL and pg. If, on the other hand,
py(N+ I)& pL, pR & pd(N), no current fiows due to the
Coulomb blockade. Changing the center gate voltage Vc
shifts the conduction-band bottom and with it all charge
levels pq(N), producing Coulomb oscillations in the
current as the transport condition is alternately satisfied
and not satisfied. In the metallic limit, when the
broadening of the OD states is much larger than the split-
ting BE, the dot excitation spectrum is continuous. As
the bias voltage V=(pL —p~)/e increases, the Coulomb
oscillations broaden and grow in amplitude, but remain
featureless.

This is not true when discrete OD states exist. At small
bias voltage eV «E&,bE, the number of states in the al-
lowed energy range between pL and pg changes from 0
to 1 to 0 as V~ is varied, giving a smooth oscillation.
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FIG. 2. (a) Potential energy landscape (left) and Coulomb
oscillation with OD shoulders (right) for a quantum dot with

bias voltage eV pL —pg =1.8 BE. Solid lines in the dot are the
electrochemical potentials pd(N) and pd(N+ I). Dashed lines
show excitations with splitting BE. The number of states avail-
able for transport, noted by the peak, changes as 0-2-1-2-0 as
VC varies. (b) Evolution of OD shoulders with increasing bias
voltage in dot 2. The curves are offset for clarity. From the
bottom, the bias voltages are 100, 400, and 700 pV. The mag-
netic field is 4 T.

When eV is of order BE, however, this model predicts the
appearance of "OD shoulders" in the oscillations. Sup-
pose pd(N) is just less than pp, and we scan Vc so that
pd(N) and the OD state energies increase. The current is

first zero (Coulomb blockade). When iid (N) =pir
current Bows via the p+1 OD states with energy between

pL and p~, where p (eV/bE (p+ I (assuming the same
energy bE separates all OD states). As Vc varies further,
one OD state first becomes unavailable for transport as its

energy exceeds pL (leaving p current-carrying states);
next a second becomes available as its energy rises above

pR (p+ I current-carrying states again). More allowed
states give a larger transition rate and more current.
After p such cycles, pd(N) exceeds pL, and the current
drops to zero. So when V& BE/e, the Coulomb oscilla-
tions acquire structure, OD shoulders, due to the discrete
spectrum of OD excitations. This is shown in Fig. 2(a)
for eV-I.8BE(p=1). The number of states available
for transport changes as 0-2-1-2-0.

The appearance of OD shoulders with increasing bias
voltage in the Coulomb oscillations of dot 2 is shown in

Fig. 2(b). The magnetic field is 4 T. Starting with the
bottom curve, the bias voltage is 100, 400, and 700 pV,
and current flows via a maximum of one, two, and three
OD states (p =0, 1, and 2), respectively. Above the
shou1ders we show the number of states contributing to
transport. We can determine the typical OD splitting BE
by noting that since two or three OD states appear in 700
pV, then 270 pV & BE & 350 pV. This measured BE is
in good agreement with that given above based on the
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FIG. 3. Zero-field I-V curves at various center gate voltages
for dot 2, showing the double-staircase structure. From the bot-
tom, the center gate voltage is —920, —910, —907, and —905
mV. The curves are offset for clarity; all traces have 1=0 when
V=O. Inset: Sample 2 gate geometry. Transport is from left
to right through QPCs 1 and 2.

dot size, and confirms that the dot contains about
N =EF/BE = 25 electrons.

The dot OD excitation spectrum also causes structure in
I-V characteristics, as predicted in Ref. [12]. Suppose in

the energy landscape of Fig. 2(a) that the bias voltage V

is swept so pL increases from pL =pir with pR fixed. At
small bias, the Coulomb blockade suppresses current until

pL & pd(N) & prr. As pL increases from this point, the
current grows in small steps as the window between pl.
and pR expands to include additional OD states one by
one, each contributing to transport. Eventually an extra
charge level pd(N+ I) is included between pL and pg.
There is a larger current jump at this point, since trans-

port can now occur two electrons at a time. The I-V
characteristic has a double-step structure, with small OD

excitation steps and larger steps of the Coulomb staircase
familiar from the metallic regime.

This double-step structure is clearly visible in the I-V
characteristics of Fig. 3, taken at zero magnetic field.
The curves are for diA'erent values of the center gate pair
voltage ranging from Vc. = —920 mV (large Coulomb
blockade, bottom curve) to V~ = —905 mV (zero
Coulomb blockade, top curve). The typical spacing be-
tween smaller OD state steps is 300 pV, in good agree-
ment with the above estimates of BE and 1V. Regions of
negative differential resistance (NDR), not predicted by
usual theories, appear at both positive and, more clearly,
negative bias voltage. These can be caused by OD states
that for some reason (e.g. , dopant-induced irregularities
in the dot confining potential) are more weakly coupled to
the reservoirs than the other levels [13]. If an electron
tunnels into this state, further transport is blocked by the
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FIG. 4. dl/d V vs V for sample 2 for equally spaced magnetic
fields from 0 (top) to 2.56 T (bottom). Peaks in dl/dV corre-
spond to discrete excitations of the quantum dot. The curves
are oA'set for clarity.

gime. In general, however, the excitation energies do not
evolve as predicted by the usual theories. A full discus-
sion will appear in a later publication.

In summary, small lateral quantum dots show the com-
bined effect of OD states and single electron charging in
linear and nonlinear transport. Coherent resonant tun-
neling occurs, described by a Landauer formula despite
the charging interaction. Coulomb oscillations and I-V
characteristics show extra structure due to the OD excita-
tion spectrum.
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Note added. —While revising this manuscript for pub-
lication, we received a preprint from E. B. Foxman et al. ,
with data from a sample much like our dot 2. Their re-
sults and interpretation are similar to those presented
here.

charging energy until the state empties. Increasing V

making this extra OD state available for transport,
reduces the current, causing a NDR.

Current steps in the I-V characteristic caused by OD

states cause peaks in the diA'erential conductance dI/dV
Tunnel spectroscopy of the OD levels is possible, although
complicated by the capacitances between the electrodes
and the quantum dot, which shift the energy levels as the
bias voltage V is scanned. Figure 4 shows traces of dI/dV
vs V for magnetic fields from 0 (top curve) to 2.5 T (bot-
tom curve). At 8 =0 the center gate voltage is tuned to a
conductance maximum. Since the largest blockade in I-V
characteristics was 3.5 mV, at zero field peaks in dI/dV
at

~ V( (3.5 mV correspond to excitations of the dot at
fixed electron number. These measurements let us track
the field dependence of the discrete excitation energies of
the quantum dot in the charging regime. This field evolu-

tion at times resembles results of theories of confined,
noninteracting electrons [14], for example, the behavior
of the peak near V= —I mV at 8=0 (top curve in Fig.
4). As 8 increases, this peak moves towards the peak at
V=O, then near 8 =1.5 T it reverses direction and moves

back to more negative bias, similar to what is expected
for noninteracting electrons in the intermediate-field re-
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