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Theory of Surface Acoustic Phonon Normal Modes and Light Scattering Cross Section
in a Periodically Corrugated Surface
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We have developed a theory of surface acoustic phonon normal modes and of Brillouin-scattering rip-
ple cross section for a periodically corrugated surface of an opaque material, in the small corrugation
limit. Both the discrete and continuous spectra of acoustic modes on a grating have been studied within
the elasticity theory. In the continuum, the Rayleigh wave becomes a resonance and hybridizes with the
longitudinal pseudomode of the flat surface, giving rise to a gap. The theory explains quantitatively re-
cent experimental results obtained for a shallow grating on a Si(001) surface.

PACS numbers: 68.35.6y, 78.35.+c, 78.65.Gb

Recent advances in Brillouin light scattering (BLS) by
acoustic surface modes in opaque materials include the
study of periodically corrugated surfaces. Two problems
have been investigated. The first one concerns BLS from
metal gratings when surface plasmon polaritons are in-
volved as intermediate states [I]; in this case the major
theoretical interest [2] has been concentrated on the ex-
planation of certain eAective selection rules found in the
experimental spectra taken with diAerent polarizations of
light. The second problem, which has been tackled exper-
imentally only very recently [3], concerns the effects of
periodicity on the surface phonon dispersion relations and
BLS cross section. It is the latter problem we want to
consider in this paper from the theoretical point of view.

There is a general physical interest behind this particu-
lar problem. First of all the presence of the corrugation
implies the appearance of a surface Brillouin zone (BZ)
and zone folding of the dispersion curves; this effect
should not be mistaken with the well-known behavior of
phonon branches in superlattices, where bulk modes are
primarily observed [4]. Moreover, in the present case,
there is a special interest in the folding of both a discrete
spectrum of surface modes [Rayleigh wave (RW)] and a
continuous spectrum of bulk modes projected on the sur-
face and exhibiting some surface character, in particular
the so-called pseudo surface modes [5].

In a very recent experimental paper [3] BLS has been
actually used to investigate in detail the dispersion rela-
tion of surface and pseudo surface acoustic modes in a
ion-milled holographic grating produced on the Si(001)
surface. The periodicity of the grating was a =2500 A
and the depth $0=175 A. The resulting corrugation
strength go/a =0.07 is considered to fall in the small
roughness limit. Glass, Loudon, and Maradudin [6] ex-
plicitly showed that in such a limit, for a sinusoidal
profile, the Rayleigh hypothesis and a perturbative expan-
sion to first order in the corrugation strength yield good
results for the surface wave dispersion curves. Indeed in

the fo11owing we will rely on these approximations. The

above mentioned paper [6], together with a subsequent
one by these authors [7], offers a variety of calculations
of surface and pseudo surface acoustic waves across grat-
ings of diA'erent corrugation strengths in isotropic media,
and it has been used by the experimentalists [3] as a
guideline to interpret their Brillouin spectra qualitatively.
However, a full understanding of BLS spectra needs not
only the dispersion relations of the modes, but in addition
the calculation of the normal modes and a proper theory
for the light scattering cross section.

The purpose of this paper is to present a theoretical ap-
proach to the calculation of the surface acoustic normal
modes of a continuous elastic medium and to the BLS
cross section in a grating of an opaque material. We also
apply the theory to the specific case of the Si(001) corru-
gated surface, which has been experimentally studied [3].
There are two possible approaches to the calculation of
the normal modes on a grating: either to consider a com-
plex surface wave vector Q so that surface and pseudo
surface modes correspond to poles of the boundary condi-
tions [7], or to keep Q real and to study in addition a con-
tinuous spectrum. We have chosen the second approach
which naturally gives the normal modes and the surface
power spectrum, to be compared directly with the experi-
mental spectra.

Our system is made of a semi-infinite medium filling
the region z ( g(x) and bound by a stress-free surface.
The x axis is chosen along the phonon propagation direc-
tion; the z axis is normal to the fiat surface. g(x) =(0
xcos(Gx) is the surface profile function; G =2m/a defines
the first surface BZ, with a being the grating periodicity
and (0 its depth. We assume a complete decoupling of
the modes polarized in the x-z sagittal plane from the
modes normal to it, as is the case for isotropic media and
the (001) surface of cubic silicon with Q along the [110]
x axis (case considered here and in the experiment [3]).
The elastic displacement field in the medium is obtained
in this geometry in terms of bulk modes as the Bloch
solution
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u(x, z, t) =u;(x, z, t)+ud(x, z, t),
where

u;(x, z, t) =+A,+(g;)e~+(g;)e'"' "e' "e

is the incident wave (of parallel wave vector Q;) from

z —~ to the surface (if any), and

ud(x, z, t) =gAi, (Q )ei. (Q )e ' " e'' 'e
m, A,

(2)

is the reflected solution representing a traveling wave

down to z —~ for qi ~ real, or an exponentially de-

caying wave if qq =i' with yi, &0. In Eq. (2)
Q =g;+G and the sum over m extends to the recipro-
cal space G = (2z/a)m determined by the surface profile

((x). The transverse momentum qi ——qq(g ) is associ-
ated with the parallel momentum Q~, such that the total
momentum (Q, + qz ) satisfies the Christoffel equation
[5] for the bulk modes of frequency 0 whose polarization
is specified by the vectors eP (Q ). The index A, takes

care of the two polarization modes in the x z-sagittal
plane which we denote by A. i, t resembling purely lon-

gitudinal and transverse solutions to which they reduce
for an isotropic medium.

The bulk modes, i.e., the quantities qz, ez—,are calcu-
lated numerically while the unknowns Az

—(Q ) are
determined imposing the stress-free boundary conditions
at the surface z =g(x), i.e., niTJ. =0, with i =1,3. The

surface normal is given by n =(z —('x)/(I+ ('z) 'tz,

where g' =dg/dx and T J =c;Jkt8ut, /Bxt is the usual stress
tensor. We use the Rayleigh hypothesis [6], i.e., we re-
tain the expression in Eq. (I) valid up to the surface
z~ g . In the Fourier space one can write compactly
the equivalent of the boundary conditions as

gH (Q„,g )A (Q )+H+(Q„g;)A+(Q() =o,

where A — is the vector (Ai=t, Aq
—=, ) and H —are 2x2

matrices defined as H —=B—F —,with F — diagonal
matrices,

~ ~ l~ ~ i —
I

' —iA&Qm)rt'~i —I~0. —0»
!

& -a/2

and

Bl i (Q„,g~) =css[~ qi ~[ez (Q~—)],+Q [ei, (g )],}+ {—clog [eP (Q )],+ciiA [ez (Q )],},
qZm

Bz—g(g„,g ) =ciig [ei.—(Q )]„c33qi [eq—(Q )],+
gZ, m

"css[qi, [eP(g )].~g [ei,-(g )],}.
When 0 & 0, (discrete spectrum) there is no incident

!
wave; therefore A+ =0 and Eq. (3) allows one to study
the dispersion relation of the surface mode in the discrete
spectrum [6]. This method can be extended to the radia-
tive region (0 & 0, ) neglecting A+ and solving the
homogeneous system (3) using a complex Q or 0; in this
case the damping of the RW has been investigated [7].
Our purpose, however, is not limited to the calculation of
the dispersion relations: We also need the eigenvectors
and the line shape of the modes, in order to compare the
theoretical spectra with the experiinental data. In addi-

tion the method of Glass and Maradudin [7] presents nu-

merical difficulties in the searching procedure of poles in

the complex 0 plane, which probably are responsible for
the lack of a gap opening, as will be shown later. There-
fore in the radiative region we take fully into account the

inhomogeneous term A+. When 0, & 0 & 0( Eq. (3) ls

solved for a single normal mode of the continuous spec-
trum. For 0 ) Oi and by taking for A+ the vectors

(o, l ),(l,o), (4)

two normal modes are obtained. 0, t=c, tg; are the
transverse and longitudinal thresholds.

In the small corrugation limit the H — matrices be-
come

H —(Q, g') = Bg g B —(Q, Q') + (g —g M —(Q,g'),

where Mii, (Q, g') = + iqi, (g') Bzi„(g,g') and the
Fourier transform of the sinusoidal grating profile is

given by gg-g =((0/2)big gi G. In this limit Eq. (3),
for n =0, becomes

A (Q;) = —(B; ) [B; A (Q;)+(g —g, M (QI, QR)A (QR)}, (5)

where B;—=B—(g, g;) and the wave vector QR ——Q+. i is related to the RW folded from the nearest-neighbor Brillouin
zones. In particular, in the range of energy we are dealing with, the only relevant term comes froin Q l. It is precisely
the presence in the latter equation of both bulk terms A —(g;) and of the Rayleigh term A (QR) that makes possible
the interaction between the surface longitudinal resonance (LR) of the flat surface and the folded RW. This is illustrat-
ed in the dispersion curves of Fig. 1 in the first surface BZ. The coefficients A (QR) appearing in Eq. (5) can be con-
sistently calculated by solving the equation

[BR —!gg„-g,. ! M (QR, Q;)(Bt ) 'M (Q(, QR)}A (QR)+gg„-g[M+(QR, Q;) —M (QR, Q;)(B; ) 'Bt+}A+(Q;)

=o, (6)

1573



VOLUME 69, NUMBER l0 P H YSICA L R EV I EW LETTERS 7 SEI TEMBER 1992

which has been derived from Eq. (3) with n = —
I in the small corrugation limit and using Eq. (5). The quantity

BR —= B (Qx, Q~) is related to the surface mode for a flat surface which satisfies det(Bn ) =0.
In Eq. (6) the grating shifts the Rayleigh pole to —g'-, while Eq. (I) contains through Eq. (5) the characteristic

Breit-Wigner behavior around the shifted pole. With the choice (4) the two solutions ol' Eq. (5) are not orthogonal,
contrary to what happens in the flat-surface case. In order to get the cross-section formulas one has to orthogonalize
them and normalize according to a standard procedure [8,9]. Equations (5),(6) form the starting point for the numeri-
cal calculations presented in this Letter. Retaining the ripple contribution [10] only, which is the relevant one in silicon
[11],the spectral intensity is given by

I a/2
o'(0) — g l5(n —n„) a ' s"(x;Q')e ' ~ ~ 'dx

0 g', n
ll (7)

'1 0.0

(/)

00 !
t

I I I I
I

'] .00 2.00

Q (1()' cm ')
FIG. 1. Calculated dispersion relations for surface and pseu-

do surface modes for the Si(001) grating described in the text
(solid lines). The experimental points are from Ref. [3]
(squares). The slanting straight lines represent the transverse
threshold (dashed lines) and the longitudinal threshold (dotted
lines). The continuum of the radiative region extends above the
dashed line. The vertical line (Q =1.26 X 10 cm ') marks the

surface zone boundary due to the grating.

where Q is the exchange in the light parallel momentum

Q =K; Kj with KI .j = (ru/c)stn8( g and

s"(x;Q') = IW,"(x,z;Q') —g'(x) W" (x,z;Q')], =&&„) . (8)

In the above equations we have used the nonmenclature
of Ref. [8], n being the degeneracy and frequency index.
Here W are orthonormal solutions obtained from Eq. (I).
Equation (8) has been obtained projecting the acoustic
field on the surface normal.

Figure 1 shows the experimental dispersion data of the
acoustic modes for the Si(001) corrugated surface previ-
ously described, resulting from the peaks of the BLS
spectra of Dutcher et al. [3]. The experimental points
fall either in the discrete or in the continuous spectrum:
The latter spectrum extends to frequencies above the
dashed lines, representing the transverse threshold. The
dotted lines mark the longitudinal threshold and also rep-
resent the dispersion curve of the LR of the flat surface
previously mentioned. This is a pseudo or leaky mode
which has been experimentally [12] and theoretically [13]

studied with BLS for the first time in GaAs. The main

features of the discrete spectrum are the gap opening at
the zone boundary and the folding of the RW dispersion
curve. In the continuous spectrum the experimental data
exhibit the hybridization between the RW and the LR.
The fact is remarkable because the LR of the flat surface
is polarized parallel to the surface and therefore does not

ripple the surface at all. Furthermore, in the previous

calculations of Glass and Maradudin [7] no gap was fore-

seen.
Our theory and calculations explain quantitatively all

these features. In Fig. 1 we compare the experimental
and calculated dispersion relations of the surface modes
and resonances. The agreement is excellent. The only in-

put parameters are the grating data, already given at the
beginning of the paper, and the elastic data of bulk sil-

icon: c]i =1 66, ei2=0 64, c44=0.80 10" Nm, p
=2330 kgm . The calculated dispersion curves in the
continuous spectrum (above the dashed lines) have been

drawn by taking the positions of the maxima in the cross
section given by Eq. (7). In this part of the surface spec-
trum, not only the LR, but also the RW is a leaky or
pseudomode. In particular, for Q in the second BZ, the
coupling between RW and bulk modes is possible if
Q~ G(I+eg/c, ), where cR is the RW velocity. In

this case the surface mode acquires a finite width O(g)
and height 0(( ') and shifts to QR =cgQ+O(g ). For

Q close to G(l+cR/cl) ' the coupling between the leaky

RW and the LR gives rise to a gap, showing that the usu-

al hybridization between normal modes of the same sym-

metry [14] occurs also in a continuum between pseu-

domodes. However, there is a peculiarity in this behav-

ior: Resonances or pseudomodes have a natural linewidth

AA, so that if they get closer than AA they are no longer

distinguishable and the gap practically vanishes. %'e

have found that in the present case the gap disappears for

a corrugation depth (u less than —50 A corresponding to

a corrugation strength less than 2%.
We have now to explain why in proximity of the cross-

ing between the RW and the LR the latter mode becomes

observable in the spectra, although on the flat surface it is

purely longitudinal. There are two reasons for that. First
the surface boundary conditions mix the unfolded RW
with the folded LR of the second zone so that the LR
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RW while the LR gives rise to a small shoulder; in Fig.
2(b) there are two equally high peaks corresponding to a
complete hybridization between the RW and the LR. In
conclusion we have shown that the surface acoustic pho-
non normal modes and the light scattering cross section in

a shallow sinusoidal grating of an opaque material can be
well described by a theory based on the Rayleigh hy-

pothesis, perturbative expansion to first order in the cor-
rugation strength, and the ripple scattering mechanism.
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FIG. 2. Calculated (solid lines) and experimental [3] (dots)
Brillouin spectra for the Si grating. The parallel wave vector Q
is (a) 1.58, (b) 1.61, and (c) 1.64&& IOs cm

gains a z character: This contribution corresponds to the
first term on the right-hand side of Eq. (8). Second, the
ripple cross section given in Eqs. (7),(8) also contains a
term proportional to W„"-[ex(Q;)] Ax (Q;) which is
resonant on the flat surface at the frequency of the LR
for A, corresponding to the longitudinal partial wave. Ac-
tually we have found that both effects contribute to
enhance the ripple cross section of the LR close to the hy-
bridization. We conclude that the grating can rotate the
polarization of the LR.

In Fig. 2 we show the comparison between the experi-
mental and calculated BLS cross section for three in-
teresting values of Q in the second BZ. Each spectrum
shows three structures: At low frequency there is a small
peak due to the folded RW (the unconvoluted cross sec-
tion would exhibit here a b function); at higher frequency
there are two peaks belonging to the continuous spec-
trum. In order to compare directly with the experimental
data, the theoretical curves have been convoluted with a
Gaussian of half-width 0.74 GHz. The theory correctly
describes the normal modes and the phonon-induced rip-
ples close to the hybridization between the RW and the
LR. In Figs. 2(a) and 2(c) the higher peak is due to the
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