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Elastic Stress Domains and the Herringbone Reconstruction on Au(111)
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We suggest that the herringbone reconstruction of the Au(111) surface results from the spontaneous
formation of "stress domains. " The surface is described theoretically by a 2D Frenkel-Kontorova model.
Upon including long-range elastic interactions, the stress-domain pattern is energetically favored. The
surface topography and structure factor obtained by relaxing atomic coordinates using molecular dy-
namics bear a strong resemblance to scanning tunneling microscopy pictures and x-ray scattering data,
respectively. Our numerical estimate for the separation between domain walls is consistent with experi-
mental results.

PACS numbers: 68.35.8s, 61.16.0i

The reconstruction of the (111) surface of gold is

unusual and not yet completely understood. It has been
known for some time that the surface layer spontaneously
densifies along one of the three (110) directions, resulting
in a (n x J3) unit cell (n-22) containing 2n+2 surface
atoms. Presumably, this occurs in response to the strong
tensile stress that would be present on the unreconstruct-
ed surface [1]. Moreover, recent experiments using x-ray
diffraction [2] and scanning tunneling microscopy (STM)
[3,4] have revealed the surprising presence of an addi-
tional superstructure: There is a regular alternation of
domains of two (out of the possible three) orientations of
the (n&& J3) cell, resulting in a striking herringbonelike
pattern, with a domain width of —150 A. Ordering on
such a large length scale suggests the presence of a hith-
erto neglected long-range interaction. Another reason for
interest in the herringbone reconstruction is that it plays
a critical role in the growth of metal overlayers such as
Ni and Co, which are found to nucleate at the "elbows"
of the herringbones [5,6].

The herringbone reconstruction is not favored within
the context of previous theoretical descriptions of the
Au(111) surface, because of the energy cost of making
domain walls. In this paper, we suggest that the inclusion
of long-range elastic interactions stabilizes the herring-
bone pattern, which is comprised of the "stress domains"
predicted by the theory of Marchenko [7], and of Aler-
hand et al. [8]. They showed that crystal surfaces that
possess an orientational degeneracy of reconstructed
phases, and have an anisotropic stress tensor, should
spontaneously exhibit a regular tesselation of elastic-
stress domains. While the possibility that these stress
domains may form on Si(100) has received much atten-
tion, they have not yet been observed on Si(100), prob-
ably because their formation is preempted by kinetically
favored step undulations [9], and also because sample
miscut leads to terrace widths that are smaller than the
predicted width of a single stress domain. Thus, the her-
ringbone structure may constitute the first direct observa-
tion of stress domains in any physical system. The

Au(111) surface satisfies the necessary conditions for the
formation of stress domains, since the (n x J3) cell has
three possible orientations, and an anisotropic stress ten-
sor (since the incorporation of the extra atoms serves to
relieve the tensile stress along the (110) direction, but not

in the transverse direction). Under these conditions, it is

shown in Refs. [7] and [8] that for large enough domain
sizes, the formation of stress domains is always favored;
it remains for us to check whether this length scale is

sufficiently short to account for the observed herringbone
structure.

The (n x J3) reconstruction is thought to arise from
the competition between two effects: (i) the preferred
surface bond length is less than that in the bulk; and (ii)
the surface atoms prefer to sit in the minima of the po-
tential due to the substrate atoms, and thus remain in re-

gistry with the bulk. This situation can be described by
the Frenkel-Kontorova (FK) model [10], where nearest-
neighbor atoms are connected by springs, and sit in a sub-

strate potential that contains the eff'ects of the bulk.
There are two competing sites for surface atoms: The
bulk fcc stacking sequence along the [111]direction can
terminate either on an fcc site (. . . ABCABC or "C"
site) or on an hcp site (. . . ABCABA or "A" site). The
latter are local minima of slightly higher energy. By oc-

cupying both C (fcc) and A (hcp) sites, the surface bond

length can be reduced; alternating domains of fcc-like
and hcp-like structures are separated by soliton walls,

where atoms occupy the "bridge" sites halfway between

the A and C sites. The atoms in these transition regions
are packed closer together, and are raised with respect to
the surface plane, resulting in the surface corrugation ob-
served by ST1VI; the width of the fcc-like region is larger
than that of the hcp-like region since the C sites are lower
in energy than the A sites.

Initially, one-dimensional FK models with known solu-

tions were applied to Au(111) [11,12], but it is not clear
that the mapping to a 1D system is strictly valid. We
choose to follow Takeuchi, Chan, and Ho [13],by using a
more realistic two-dimensional substrate potential, which
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The first term is a sum over all atoms in the (n x J3) cell,
whose positions are given by r;; the second term is a sum
over the bonds (springs) that connect each atom to its six
nearest neighbors, lj is the length of the bond j, k is the
spring constant of the bonds, and b is their preferred
equilibrium length (b (a). The zero of energy in Eq.
(2) is arbitrary. In principle, Eq. (2) should also contain
a term describing the chemical potential, since we are
considering reconstructions where the surface density
changes [1]. However, we have found empirically that
such a term can be regarded, to a first approximation, as
having been absorbed into our choice of the preferred sur-
face bond length b [14].

The equilibrium configuration is determined by per-
forming a molecular-dynamics simulation using the
method of steepest descent; we verified that we had
indeed found the true ground state by checking that a
wide variety of initial states all relaxed to the same final
state. The value of b and k are chosen such that the sur-
face energy density is minimized at n =22, and to repro-
duce the experimentally observed value of 0.5 for the rel-
ative width of the hcp-like and fcc-like regions [15]. We
thus obtain b =2.7744 A and k =90 mRy/A . We find

that the transition from C to A sites is gradual rather
than sharp, which agrees with some previous results [13].
However, it is convenient to retain a description in terms
of soliton walls separating hcp and fcc domains, even
though these features are not sharply defined. [To avoid
potential confusion, we point out that the terminology
used in this paper is such that soliton walls separate
hcp-like and fcc-like regions within the (nx J3) recon-
struction, whereas domain walls separate diA'erent orien-

is expanded as a 2D Fourier series of the form

Vg(r) =g Vs(G)e
G

=Vp+2 g [icos(G. r) —Visin(G. r)]
Get2

+ g V2cos(G r) .
Ge S'3

Here 9'2 is a set of three of the six reciprocal-lattice vec-

tors (RLVs) of length 4z/J3a (with 120 mutual an-

gles), and Q3 consists of the six RLVs of length 4z/a,
where a=2.884 A is the lattice constant of Au. The
values of the coeScients Vp, Vg, VI, and V2 are obtained

by fitting to the first-principles results of Takeuchi, Chan,
and Ho [13] for the value of the Vg when the topmost
layer of atoms occupies the A, 8, C, and bridge sites.
This gives Vo = —8.025 mRy, Vg = 1.483 mRy, VI
= —0.087 mRy, and V2 = —0.146 mRy.

The surface energy of each (n & J3) cell is then given

by the sum of a term due to the substrate potential and a
term describing the potential energy of the intralayer
bonds:

tations of the (nx J3) reconstruction. ] We find that the
maximum transverse displacement (along [112]) is 0.88
A; this may be compared with experimental values of
0.7 ~ 0.3 A [15] and 0.9 A [4].

We now apply these same techniques to study the her-
ringbone pattern, which is depicted schematically in Fig.
1. The soliton walls form zigzag lines that bend by 120'
at the domain walls, which run parallel to the y axis and
are separated by a distance I. The bonding topology is
such that alternate soliton walls contain dislocations at
every "elbow" where the walls bend. Each dislocation
consists of a pair of atoms, one of which has 5 (instead of
6) bonds connecting it to nearest neighbors, while the
other atom has a bond coordination of 7. The remaining
soliton walls are free of such dislocations; sixfold bond
coordination is maintained throughout. Following the au-
thors of Ref. [5], we will refer to these two kinds of soli-
ton walls (with and without point dislocations) as being
of type x and type y, respectively.

We have confirmed that, in the absence of terms
describing long-range elastic interactions, the surface en-

ergy density of the herringbone pattern is always greater
than that of the (n x J3) cell, due to the positive energy
contribution from the domain walls [since the energeti-
cally favorable (n & J3) reconstruction is disrupted in the
neighborhood of the walls]. Upon computing this addi-
tional energy term when l is large, we find that the energy
per unit length of each domain wall is Ci 6.6~0.2
me V/A.

We now include substrate-mediated long-range elastic
interactions, following the treatment of Ref. [8], and ob-
tain a theoretical estimate of the domain wall separation
I, to check whether it is plausible that this elastic mecha-
nism is in fact responsible for the observed superstruc-
ture. The equilibrium value of I is determined by balanc-
ing the domain wall energy against the elastic relaxation
energy term which favors a reduction in the anisotropy of

FIG. 1. Schematic depiction of the herringbone reconstruc-
tion. The x axis is along [110], and the y axis along [112].
Domain walls run parallel to the y axis and are indicated by
heavy dashed lines; soliton walls are represented by heavy solid
lines that separate regions of fcc-like and hcp-like stacking.
Stars show the positions of point dislocations. Light solid lines
outline (n x J3) subunits, which have alternating orientations in

alternate domains.
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the surface stress tensor. The latter term is given, within
continuum elastic theory, by the sum in reciprocal space
[8]:

~.l
= —

2 glfy(G. ) I'Zyy(G. ),
G,

(3)

where gyy is the elastic Green's function that relates dis-
placements along y in the surface layer to the force densi-

ty f~. For the geometry depicted in Fig. 1, the force den-

sity is given by

9.0

07
6.0

3.0

0.0
57

LYLY'

a —Ba
d

4 0

0 57

jr (x,y) = + (o~( —o~)6(x —xp),JY

where [xoj denotes the positions of the domain walls, and

oii and o& are the components, along the "n" and "K3"
directions, respectively, of the surface stress tensor for the
(nx J3) reconstruction. g~~(G„) has the form I/pG„,
where p is a shear modulus. For the type of shear strains
appropriate to our problem, we must take p =(cll —c|2
+4c44)/6. Upon using experimental values for the elastic
constants [16], we obtain p =203 meV/A . The elastic
relaxation energy can now be rewritten in the form [8]

C2
Eel = — ln

l

where

Sad

C)/C2+ 1

10 =made (7)

To obtain the domain wall width ad we examine the
variation of some quantity that is finite at the domain

walls but zero for a pure (n x J3) reconstruction. Such a

quantity is obtained by first computing fp, the force due
to the substrate potential, at relaxed atomic coordinates,
and then seeing how P, the diA'erence in fg at the sites of
corresponding atoms in neighboring (n x J3) cells, varies

through the unit cell of the herringbone pattern. Figure 2

shows two examples of how 9 varies as a function of the
x coordinate, suggesting that a suitable value of ad lies
somewhere between 3a and 8a.

Regarding the surface stress anisotropy a~ —all, we are
unfortunately not aware of any first-principles calcula-
tions of the surface stress tensor for the (n x J3) struc-
ture. Such a calculation has been performed for the un-
reconstructed (1 x I) structure by Needs and Mansfield
[1], who obtain a value of 173 meV/A for the surface
stress g. If the (n x J3) structure could be assumed to re-

lieve the stress entirely in the n direction, but not at all in

the J3 direction, this would lead to o ~ —o
~~

= 173

3C2=
Sz p

Here ad represents the length scale over which the force
density at the domain walls falls oA' to zero, i.e., ad is the
width of a domain wall. The surface energy density is

minimized when the separation between domain walls is

given by [8]

xja
FIG. 2. Plots showing how 7, the magnitude of the

difference in fg between neighboring atoms, varies along a row
of atoms (i) along a soliton wall (solid circles), and (ii) in the
middle of an fcc-like region (open circles), for n =21 and
I =57a. There are domain walls at x/a = —57,0, 57.

meV/A . However, this is undoubtedly an overestimate.
The FK model used above yields ratios ot (n & J3)/
a(l x 1) =0.16 and a&(n x K3)/o() && 1) =0.77. While
this model may not be reliable for estimating absolute
surface stresses [17], these ratios appear quite reason-
able. With these considerations in mind, we take as our
best estimate oj —ot =105 ~ 20 meV/A for the stress
anisotropy in the (n & J3) cell.

Upon substituting our values for ad, C~, and oi —0!]
into Eqs. (6) and (7), we obtain the result that the pre-
dicted domain wall spacing lo lies between 140 and 980
A. Some of the experimentally reported values of I (at
room temperature) are 162 A [2], 140 A [4], 125 A, and
150 A [6]; we therefore feel that our calculation provides
strong evidence that long-range elastic interactions are
responsible for the herringbone reconstruction. A more
precise estimate of lo could be obtained by calculating the
surface stress tensor for the (n x J3) cell more precisely,
evaluating the dislocation core energy more accurately
(e.g. , by including bond strength eA'ects around the five-

fold and sevenfold coordinated atoms), and perhaps also

going beyond the approximation of a continuous elastic
medium. However, the very large size of the unit cell
makes more exact calculations difficult.

We find that the relaxed surface configuration obtained
from the FK model agrees well with both x-ray and STM
experiments. It has been verified [18] that the structure
factor for the herringbone cell, computed using our re-
laxed coordinates, is in accordance with that deduced
from x-ray scattering. In Fig. 3, we show what the re-
laxed structure looks like for ( =147 A. Each atom has
been shaded according to the value of the substrate po-
tential at its relaxed coordinates; lighter atoms denote a
higher value of the substrate potential. Such a shading
scheme should essentially reproduce the surface corruga-
tion observed by STM. A comparison of Fig. 3 with
STM pictures [3-6] reveals a striking similarity of
features. The light ridges in the figure correspond to soli-

1566



VOLUME 69, NUMBER 10 PH YSICAL REVI EW LETTERS 7 SEPTEMBER 1992

gy, under Contract No. DE-AC02-75CH00016.

FIG. 3. Picture of the herringbone reconstruction, for n =21
and I 147 A. The boundary of a unit cell is indicated. Each
atom is shaded according to the value of Vg at its relaxed coor-
dinate; lighter atoms sit at higher values of Vq. This figure
essentially reproduces the surface structure as seen by STM.

ton walls where atoms sit in bridge sites and are raised
relative to the surface plane. Broad dark bands corre-
spond to fcc-like regions, and narrow dark bands corre-
spond to hcp-like regions. There is a clearly observable
difference between soliton walls of types x and y. The
former have pointed elbows, whereas the latter have more
rounded elbows. As a result, alternate domain walls have
either very narrow, pinched-off hcp-like regions or broad
hcp regions that are equal in width to the fcc regions. A
close examination of Fig. 3 reveals a very high contrast in

the shading of neighboring atoms at the sites of the dislo-
cations; this agrees with a reported STM observation [4]
that the corrugation amplitude of the reconstruction is in-
creased near elbows at domain boundaries.

In summary, we have applied the theory of stress
domains to the Au(111) surface, which we have described
using a combination of a 2D Frenkel-Kontorova model
and continuum elasticity theory. We find that for the
herringbone pattern to be favored, it is necessary to in-
clude long-range elastic interactions mediated by the sub-
strate. Our theoretical estimate for the domain wall
spacing I is consistent with experimentally measured
values. Thus, we provide an answer to the puzzle of what
causes the herringbone reconstruction, and also confirm
that long-range elastic interactions do indeed lead to in-
teresting phenomena at mesoscopic length scales.
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