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Extended Isotropic-to-Anisotropic Crossover above the Nematic-Smectic-A Phase Transition
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We perform a one-loop, self-consistent calculation of the density-wave and director fluctuations above

the nematic-smectic-3 phase transition, find the renormalization of the perpendicular and parallel

correlation lengths, and for the first time calculate values of the anisotropic critical-point exponents vll

and v~. As the transition is approached several distinct regions of scaling behavior are found with in-

creasingly anisotropic critical behavior. A plot of eAective exponents from experiment versus the anisot-

ropy ratio vii/vi reveals a systematic correlation that agrees with our calculation.

PACS numbers: 64.70.Md

In the field of critical phenomena one of the most puz-

zling phase transitions has been the liquid-crystal transi-
tion from the nematic (N) phase to the smectic-A (A)
phase. Theoretical studies of the NA transition based on

the standard form of the free energy [1] have found
difl'erent universality classes [2-4], some with isotropic
values for the physical critical exponents and some with

strongly anisotropic critical exponents. However, experi-
mental studies, e.g. , x-ray scattering [5], show weakly an-

isotropic behavior, with coherence-length critical-ex-
ponent anisotropy ratios of 1.1 to 1.5, much below the
value of 2 predicted by the anisotropic fixed point. Be-
cause the scattering data are fitted well over three de-

cades in reduced temperature with a single critical ex-

ponent, the weak experimental anisotropy cannot be a re-
sult of a simple crossover from high-temperature isotropic
behavior to low-temperature strong anisotropy.

In this Letter we present the results of a simple model
that, for the first time, exhibits a broad, weakly aniso-
tropic region above the 1VA transition between the high-
temperature, isotropic and the low-temperature, strongly
anisotropic regions. This model, which is analogous to
the large-N limit of an ¹ omponent order-parameter
theory, incorporates couplings between the two fields in

the free energy in a fully self-consistent, one-loop approx-
imation. The large range of nonasymptotic exponents we

find results from a manifest spatial asymmetry in the cou-
pling of the two fields, which leads to qualitatively
diA'erent renormalizations of the correlation lengths in

diA'erent directions.
The nematic phase of liquid crystals is characterized by

the director n, which is a unit vector in the direction of
average alignment of the rodlike liquid-crystal molecules.
The Frank free energy describes the elastic deformations
of the director [6]:

d'k7 f 3
[(Kik~+K3kii )8n,'+(K2kj +K3kii )8n,']

(2tr) '

where Ki, K2, and K3 are the splay, twist, and bend elastic constants, and Bn, and Bn, are the splay and twist fluctua-
tions of the director perpendicular to no, parallel and perpendicular to kj, respectively. de Gennes [1] introduced a
Landau-Ginzburg free energy for the order parameter y characterizing the smectic density wave near the /VA transition:

V~= d r[aoiVti + —,
'

bitlti +(V+iqon);Vt*I;, (& —iqon), Vt], (2)

where aotxt, b is constant, qo is the wave vector of the
density wave, and I;, is the (diagonal) inverse mass ten-
sor. The elements I;; are g~n, g~n, and fifo, where g~n
and gimp are the bare (unrenormalized) correlation lengths
perpendicular and parallel to n, respectively. As the AA
transition is approached, the physical correlation lengths
diverge with critical exponents v~ and vii. (~ cc t and

jiicct ", where t =T/Ttvq —
1 is the reduced tempera-

ture. It is important to note that even if the mass tensor
were isotropic, the coupling between the smectic wave
and director fluctuations would still be anisotropic (un-
like, for example, the superconductor), since, to lowest

!
order, fluctuations in n =no+6n are perpendicular to the
average value of no. The anisotropic coupling is the ori-
gin of the unusual anisotropic behavior of this system and
the extended crossover to the asymptotic critical region.

The correlation lengths are obtained from the
smectic-order-parameter correlation function, G(r)
=(vr*(r) vr(0)), taking into account its coupling to
the director-director correlation functions, D, , (r)
=(6n, , (r)8n, , (0)). We identify the physical (renor-
malized) correlation lengths (~ and gii and elastic con-
stants K ],K2, K3 from the small-k expansions of the
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Fourier transforms of these correlation functions:

G '(k) =Gp '(k) —Z(k) =a[I+(3k&+(1((kll —qp) +c(~k~] (3)

and

D (k) =Dp, (k) II (k) =[Kl 2k +K3kll ], (4)

where a =ap —Z(0) a: t" and the k& term in Eq. (3) is included since (~ may become anomalously small compared to
(2

The self-energies Z(k) and Ii(k) are calculated explicitly in the fully renormalized one-loop approximation, including

vertex renormalization [7]. Ward identities arising from rotational invariance that relate the renormalized director-
density wave interaction to the renormalized propagator are an essential feature of the self-consistency of the calcula-
tion. To fourth order in k& and to second order in kll, we find

pip ktt Tqogi
L J. ia

SKI�(II

(6a)

4110 kBTqp4~4II+
a xK]

(6b)

Using Eqs. (5) and (6a) we find the coefficient c in Eq.
(3) to be weakly temperature dependent [7]. Similarly,
our calculation of II(k) yields elastic-constant correc-
tions, bK2 and bK3, that have the Jahnig and Brochard
[8] form but with correlation lengths given by Eqs. (6):

~K2 qoktt Tg~/24&(II,

~K3 =qoka T(II/24tr .

(7a)

(7b)

Thus there is only one set of exponents, vll and v~, which

characterize both density-wave correlations as well as the
elastic-constant divergences, unlike calculations which

transform from the liquid-crystal to the superconductor
free energy [2].

Because the correlation lengths are highly anisotropic,
Eqs. (7) indicate the correction to the bend elastic con-
stant is much larger than the corresponding correction to
the twist elastic constant. Thus K3 is renormalized at a
higher temperature than K2. We define crossover tem-
peratures at which the corrections to the elastic constants
become comparable to their bare values [9]:

a2 = (kz Tqo4~o/24KK2pgllp)

a3 = (ka Tqo411o/24xK3p)

(8a)

(8b)

Similarly, crossover temperatures for renormalization of
the perpendicular and parallel correlation lengths are

ax, [l
= kt3 Tq of ~p fJ, ll t J., ll ~

I II 0

XK I

where f~, fll, and g~ (all &0) are functions of the di-

mensionless ratios (K3/(11 )/(K I 2/g~), which approach
constants as t 0. The sign of the k& term indicates
fluctuations reduce the rate of growth of g~. Combining

Eqs. (3) and (5) yields (& and (11..

(5)

Because the fluctuations in n are to leading order per-
pendicular to n, as discussed above, the y-bn coupling is

a function of k& but not of kll, this quasio. 'hogonality
makes f& » fll. Therefore all is typically 5 orders of mag-
nitude smaller than a&. Thus, as the transition is ap-
proached renormalization of g& due to the interaction
with director fluctuations occurs before a similar renor-
malization of (11. Typical values of the elastic constants
and correlation lengths result in a3 comparable to a& and

a2 comparable to a~[.

Above all four crossover temperatures the temperature
dependence of the correlation lengths is g& Iieet
However, in the intermediate temperature range tll 2

+ t J 3 where the correction to (lip in Eq. (6b) is

unimportant, Eqs. (6) have the solutions g~ ~t 3"t and

(11 ~t ", yielding a weak anisotropy with vll/v~=4/3.
Depending on the values of the bare elastic constants and
correlation lengths other intermediate temperature re-
gimes are possible. In all regions vll/v& lies between 1

and 2, but is not necessarily equal to 4/3. Below all four
crossover temperatures our explicit solution of Eqs. (6)
and (7) yields an ultimate strongly anisotropic fixed point
with vll=y and v~=y/2. The gradual crossover to in-

creasing anisotropy indicates that the Landau-Peierls
[10] nature of the smectic-A phase (i.e., a mode with en-

ergy proportional to k&+k121) develops continuously as
the smectic transition is approached from the nematic
side. While g3 ultimately diverges near the transition
with the same exponent that it would have were the tran-
sition isotropic, the eff'ective prefactor has been reduced
because of the weaker divergence that occurred in the
temperature regime between t & and t ~[. On the other
hand, (11 diverges twice as fast: (11~(&. Thus, in the
t 0 limit our results above the transition agree with the
strong anisotropic scaling predicted by the dislocation
theory of Nelson and Toner [3] approaching the transi-
tion from below. Our anisotropic results do not depend
on using the x-ray scattering function [~G(k)] to define
the correlation lengths, but apply also if the two lengths
are defined from the renormalization of the elastic con-
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stants: (gs/(&) =6K3/SKAG. Thus the anisotropy in our
solution is inherent in the thermodynamic phase transi-
tion and is not just a property of the smectic order-
parameter correlation function [2,4].

and 1/n-expansion calculations [2] that rely on

transforming the liquid-crystal free energy to that of a

superconductor [11] predict isotropy for the physical

(thermodynamic) critical exponents as t 0. However,

large fluctuations for small Ki inherent in the "gauge
transformation" from superconductor to liquid-crystal
system produce a ratio of the x-ray exponents vii/vj of 2

[2]. The following argument [7] indicates that the isotro-

py in the physical exponents can result from a relaxation
of the constraint present in the liquid-crystal free energy,
that the length of the director n is unity. When the

length of n is fixed the fluctuations in n are restricted to
the plane perpendicular to n, resulting in anisotropic re-

normalization of the correlation lengths (vii=2v&). If
fluctuations in n are allowed in all directions relative to n

(i.e., if the length of n changes) then the renormalization
of the correlation lengths is isotropic, as in the supercon-
ductor (vii = vi). This effect may be elucidated by add-

ing a term to the free energy that controls the constraint:

2
&constraint

=
8 K4[n' n I ] (10)

Equation (10) adds a mass K4 to the fluctuations of the

length of n, Bn„but not to Bn, and 8'n~. For the isotropic
liquid crystal (i.e., giip =pip =(p and Kip =Kpp =K3p
=Kp), it may be shown in each order of perturbation

theory that as K4 ~ one recovers de Gennes' liquid-

crystal theory with lnl =1 (for which we find vii =2v&),
while for K4=0 the theory becomes manifestly isotropic
(requiring vii

= vi). For finite K4 the K4 ~ limit con-

trols the ultimate fixed point, with crossover determined

by

(gp/a)K4/Kp = 1,

temperature [Eq. (9)] on difl'ering system parameters.
Therefore, in the absence of detailed crossover studies we

use a simple linear interpolation between the high-

temperature, isotropic region with vii/v~ =1 and the weak

anisotropic region with vii/v~ =4/3. The theoretical pre-
dictions for effective exponents vii/y and v~/y vs vii/v~

are shown in Fig. 1 along with extensive x-ray scattering
data [5]. The data clearly indicate that vi/y drops as the
ratio vii/vj increases, as our theory predicts. Finally,
since the crossover into the weakly anisotropic region is

gradual and extended, as indicated by numerical solutions

of Eqs. (5) and (6) [7], it may be diScu[t to resolve the
regions with diA'erent exponents.

A curious dependence of the critical behavior above the
AA transition on the size of the temperature range of the
nematic region has been seen [4, 13]. In this connection
our model predicts that the ti crossover temperature will

be higher for narrow-range nematic systems with a larger
values of Ttvq/Tjvi (the ratio of the NA and isotropic-
nematic transition temperatures) because K i, which

grows as the square of the nematic order parameter, will

be smaller for these systems, and t& depends inversely on

A ]. Thus experimental measurements made on the
narrow-range nematic systems should be deeper into the
weak anisotropic regime predicted by our model, and

could possibly begin to cross over into the strong aniso-

tropic regime, unlike the broader-nematic-range materi-

als which straddle the isotropic and weak anisotropic re-

gimes. Therefore, our model predicts the following for

systems with larger T~~/T~I. (1) vii/vi should be larger;
(2) a, the specific-heat exponent, should be larger, since

vll and vi are thermodynamic exponents and obey the

hyperscaling relation a=2 —
vii

—2v~; and (3) p2, the

critical exponent for K2, should be smaller. These predic-
tions are all a result of the reduced value of v& in the

weak anisotropic regime. Predictions (1) and (2) have

so that as a 0 the constraint dominates, yielding the
anisotropic case. This indicates that the constraint on the

director, lnl =1, appears to be the crucial factor in deter-

mining the isotropy or anisotropy of the transition, rather
than the value of the constant Ki [2].

The presence of a weakly anisotropic intermediate tem-

perature regime with vii/vj =4/3 is consistent with exper-
imental observations. Light scattering measurements

[12] show that 10 '&t2 & 3x10 in the few systems
that have been studied. Since tll is somewhat smaller
than tq, the x-ray measurements on these systems (for
10 & r & 10 ) have not yet probed the strong-scaling

(vii =2v~) temperature range, though they are approach-
ing it. Indeed most of the experimental values for vii/v~

lie between 1.1 and 1.33 [5], which our theory would pre-
dict if the temperature range over which the data were
taken straddled the t~ crossover temperature. However,
there is a seeming lack of universality in the experimental
exponents arising from the dependence of the crossover

v/y

'6 ~ v

.4

.2 "

1.0
l l

1.1 1.2
vii/vi

l

1.3

FIG. 1. Plot of the correlation-length exponents scaled with

y vs the anisotropy ratio vs/v&. The lines are the theoretical
predictions for the effective values of vs/y and vi/y. The trian-

gles and circles are experimental values for vs/y and v~/y, re-

spectively, taken from x-ray scattering experiments reported in

Ref. [51. A typical error bar is shown.
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been seen experimentally; however, proximity to a possi-
ble tricritical point tnay complicate interpretation of the
experiments. Studies of broad-nematic-range materials
should help clarify the situation.

In conclusion, we have found a gradual crossover from
isotropic to anisotropic behavior above the NA transition
using a simple model which is based directly on de
Gennes' free energy, without mapping onto the supercon-
ducting analog. The anisotropy in the critical behavior of
the correlation lengths develops because of the anisotrop-
ic nature of the coupling of the density-wave and the
director fluctuations in the free energy. This leads to a
renormalization that is opposite in sign for the perpendic-
ular and parallel directions and therefore yields, near

TNg, a perpendicular correlation length that is less than
that for an isotropic system and a parallel correlation
length that is much larger. Current experiments appear
to be on the verge of entering the strong-coupling regime
(v~~ =2v~) for t & 10;observation of a sharp crossover
to a larger exponent for g~~ would be a clear confirmation
of the theory presented here.

We would like to thank Satyendra Kumar for reviving
our interest in this problem. We are especially grateful to
Robert Mills for fruitful discussions.
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