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We study the nonequilibrium dynamics of line liquids as in the nonlinear motion of flux lines of a su-

perconductor driven by an applied electric current. Our analysis suggests a transition in the dynamics of
the lines from a smooth, laminar phase at small driving forces, to a rough, turbulent phase when the
drive is increased. We explore the nature of these phases and describe interesting analogies to driven
diA'usion and growing interfaces.
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The statistical mechanics and dynamics of extended
objects such as lines have attracted increasing attention,
especially in the context of flux lines of a superconductor
[1-4], in recent years. In this paper, we study the non

equilibrium dynamics of a driven line liquid. Our
analysis suggests that such a system can exhibit a transi-
tion from a "laminar' phase described by equilibrium
fluctuations at small driving forces to a "turbulent" phase
dominated by nonlinear efl'ects as the driving force is in-

creased. We explore the nature of these phases and de-
scribe interesting analogies to driven diffusion [5] and

growing interfaces [6].
As is well known for type-II superconductors [7], mag-

netic flux lines can penetrate a sample under the applica-
tion of an external magnetic field H, forming an Abriko-
sov lattice at low temperatures. However, as pointed out

by Nelson [I], thermal fluctuations can destroy the
translational order of the flux lines, melting the flux lat-
tice into a line liquid. The equilibrium properties of the
line liquid has been studied in detail by Nelson and co-
workers [1,3,4]. This paper concerns the nonequilibrium
dynamics of the flux line liquid driven by an applied elec-
tric current J,LH. But before delving into the driven dy-
namics, we shall first give a brief revie~ of the dynamics
of the lines in equilibrium.

We describe the long-wavelength, long-time behavior
of the line liquid by a vector field 8(r, t), with the con-
straint V B=0. The divergentless B field lends itself nat-
urally to the description of a generic collection of lines
without free ends. In the context of superconductors, 8 is

the coarse-grained magnetic field carried by the flux lines.
Let the external field H be in the z direction, then the z

component of B describes the density of the flux lines and
the x,y (or collectively called the J ) components de-
scribe the local tilt [4]. The dissipative thermal motion of
the flux lines in the liquid phase destroys the supercon-
ductivity of the sample [8]. The resulting dynamics is
diff'usive and can be described by the Langevin equation
[4], B,8=vV 8+V&&ri, where we have scaled out the

A =vV A p(B)J, +ri+—Vy,
ai

(2)

where the last term will be fixed by the choice of gauge.
We look for the fluctuation of A about the average by us-

ing a displacement field, u=z&& (A —Boxy), where Bo is

the mean density of the lines. Expanding p(B) and keep-

ing the leading order nonlinearity, we obtain

trivial anisotropy factors between the z and & directions.
The Langevin noise is employed to summarize thermal
fluctuations over the microscopic degrees of freedom. It
must take on the form of a curl to keep B divergentless,
but is otherwise taken to be uncorrelated and Gaussian
distributed, with the second moment (g;(r, t)rii(0, 0))
=2D8;t8 (r)8(t). The choice of the noise spectrum is

justified by matching the resulting static structure factor,
(8(k, t)8( k, t)), with—the same quantity obtained from
the equilibrium theory [3]. The phenomenological pa-
rameters D and v can be identified as the temperature
and elastic moduli of the equilibrium theory.

We now consider nonequilibrium eA'ects introduced by
an applied external current J,&z, taken here to be in the

y direction. The external current provides a Lorentz
force F =J, x 8 which drives the line liquid in the x direc-
tion. The viscous motion [4] of the flux lines in turn in-

duces an electric field E which must be included in the
equation of motion, i.e., 8,8 Bt8 —Vx E. The most
general form of E allowed by symmetry is

E=p(B)J,+p(B)(8 J,)8,
A

where B and B denote the norm and direction of B, re-

spectively, and the coefticients p, p can be identified as the
field-dependent resistivity [9].

For simplicity, we make a reasonable assumption that
the fluctuation of 8 in the direction of J, is small (i.e. ,

By ((B„B,), and only consider the efl'ect of the first term
in Eq. (1). We will later show the self-consistency of this

assumption. The dynamics is then more conveniently
expressed in terms of the vector potential A. With
B=V x A, the equation of motion becomes

A ~J ~ QQ=vV u+T Eo —c(V~ u)+ (V~. u) +
2 2 Bz

' 2

(3)
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D;J(k) =D[b';, +(k j~.b;, —k'j. k'j )/k,2] . (4)

It is worth emphasizing that although Eq. (3) is derived

through some rather specific considerations such as the
form of p(8), the general form of the dynamics is a
consequence of the applied driving force J, which breaks
spatial isotropy. As a result, we expect Eq. (3) to be a
good description for a generic line liquid with dynamics
local in 8 and u.

A systematic investigation of the scaling behaviors is
the method of dynamic renormalization group (DRG)
[12]. In that approach, we generalize the space of l.
directions (and thereby the components of the displace-
ment field u) from two to d& dimensions. Also we gen-
eralize the z direction from one to d, dimensions. Equa-
tion (3) is studied near the critical dimension d=d&
+d, 2, and the result is then analytically continued to
the physical dimension (d~, d, ) =(2, 1). The most impor-
tant output of the DRG analysis is a recursion relation
which describes the relevancy of the nonlinearity at suc-
cessively larger length scales. In a one-loop study, the re-
cursion relation has the form

In Eq. (3), T =J, it z =x is the transport direction,
—V~. u =8, 8—0 is the density fluctuation, and B,u =B~
describes the local tilt (see Refs. [3] and [4]). The pa-
rameters in square brackets are given by the Taylor ex-
pansion of p(B) about Bn. For example, En=p(Bn) J, is

the mean electric field induced; it produces an overall
translation in u„=—u T and can be shifted away. Similar-

ly, v p'(Bn)J, is the mean drift rate of the lines; it is

again shifted away by a Lorentz boost in the T direction.
The nonlinear terms remaining are characterized by the
coefficients A, & =p"(Bo)J, and X, p'(Bp) J /Bp. For su-

perconductors, p(8) is usually a monotonically increasing
function, saturating at large values of 8 [10]. This im-

plies that Eo, v, and X, are always positive, while X~ may
take on either sign. While the response of the system to a
sign change in li. ~ is an interesting study in itself [11],we

shall be concerned with the situation A. & & 0 in this study.
Anticipating the restoration of isotropy, we set

from here on. Finally, the new noise is

zx(rl+V|p), with B,tS ri, from the gauge choice
A, =0 in Eq. (2). This gives ((;(k,t)(J(k', t'))
=2DJ(k)(2n)3b (k+k')b(t —t') in Fourier space, with

the noise spectrum

(a) / "e

if higher-order terms in the recursion relation are posi-
tive. For example, if I(d =2) & 0, then a dynamic phase
transition occurs at g, =(d —2)/I. For g &g„ the non-

linearity is still irrelevant. But for g&g„ the coupling
constant Aows to large values and the system is described

by a strong coupling fixed point [13]. Thus the behavior
of the system at the physical dimension is dictated to a
large extent by what happens right at the line of critical
dimensions, i.e., by the sign of I(d =2). To better under-

stand the behavior of the system then, we shall now con-
sider some limiting cases on the critical line.

We first examine the case (d&,d, ) =(2,0), correspond-

ing to the situation where an external field H is applied
normal to a thin-film superconductor and the external
current is applied in the plane. In this case, the flux lines

become point vortices and the problem becomes quite
simple. Since ti, u=0, the configuration of the vortices
can be described by a scalar field n = —V~ u which is the
fluctuation of the vortex density. Equations (3) and (4)
then reduce to the well-known driven-difl'usion system
(DDS) [51. The DRG method has been used to investi-

gate the scaling properties of that system. One finds

I(d& =2,1,=0) &0, indicating the marginal irrelevancy
of the nonlinearity.

We next investigate the limit (dj.,d, ) =(1,1). This
corresponds to applying an external field H in the plane
of a thin-film superconductor, with an applied electric
current normal to the plane as shown in Fig. 1(a). In this

special configuration, the displacement field u is reduced
to a scalar, u„. The noise spectrum also simplifies as the
nonlocal term vanishes. Equations (3) and (4) then

become the simpler anisotropic Kardar-Parisi-Zhang
(KPZ) equation which describes the growth of a tilted
crystalline surface [6,11], with u„being the height of the
surface. The connection between the lines and interfaces
is intuitively simple: The lines shown in Fig. 1(a) can be
viewed as the contour plot of a tilted surface [14]. The
growth of such a surface corresponds to the movement of
the lines to the right.

For the KPZ equation, one finds the one-loop term in

Eq. (5) to be positive [6]. So the nonlinearity is margin-

ally relevanr, and the asymptotic scaling behavior is de-

(5)

where the coupling constant g-). D/v characterizes the
effective strength of nonlinearity, I(d~, d, ) is the one-
loop result evaluated along the line of critical dimension
d&+d, =2, and l —ln(1/k) ee is the infrared limit of
interest.

In the physical dimension d=3, the first term in Eq.
(5) is negative, indicating the irrelevancy of a small non-
linearity. However, the nonlinearity can become relevant

FIG. l. (a) Flux lines confined to a thin superconductor film.
Electric current J, is applied normal to the film. Lorentz force
F drives the lines to the right. (b) A "scrambled" line config-
uration from the contour plot of a rough surface.
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scribed by a strong coupling fixed point. Extensive nu-

merical studies [15] find that fluctuations in u diverge
algebraically with system size in the strong coupling
phase. In the interface language, this corresponds to the
divergence of interfacial width, and the resulting surface
is called "rough. " A contour plot of a rough surface
yields a "scrambled" line configuration with the prolifera-
tion of vortex loops [see Fig. 1(b)]. In contrast, a smooth
interface gives a set of roughly parallel lines without
loops [Fig. 1(a)].

The physical problem of a line liquid in three dimen-
sions lies somewhere in between the KPZ and DDS lim-

its. To find out whether this problem may also flow to
strong coupling, we need to know the boundary between
the KPZ- and DDS-dominated regions in the space of
generalized dimensions (d&, d, ). We can get an estimate
by computing the function I in Eq. (5) and see where it
changes its sign. However, a full DRG treatment of Eq.
(3) is rather cumbersome. Here we discuss a truncated
version which contains the essential physics.

From Eq. (3), we note that u„ is the only component of
u renormalized by the nonlinear terms. If the system
flows to strong coupling, then only u„will pick up anoma-
lous scaling. It will then dominate the dynamics, allow-

ing us to replace 8u by 8tt„ in Eq. (3) in the hydro-
dynamic limit. [This is also the justification for neglect-
ing the cross term in Eq. (1).] We also find the nonlocal
part of the noise spectrum in Eq. (4) not to renormalize,
while the local part of ((„g„)does. So the nonlocal part
can again be ignored in the strong coupling limit. Conse-
quently, isotropy between the x and z directions is re-

stored. In the comoving frame x x —vt, u„Eat+ h,
we obtain the following simpler equation of motion:

8h A.= v[V +V ]h+ v V h+ —[(V h) + (V h)']+ rt

(6)

where rt =g„ is now a white noise. We believe the above

system is equivalent to Eqs. (3) and (4) in the strong cou-

pling limit. Note that Eq. (6) is diff'erent from the KPZ
equation [61 by a "missing " term (V~h) . The exclusion
of such a term is a consequence of the locahty of the dy-

namics in B. This missing term gives rise to anisotropy
between the (x,z) and y directions, which we explicitly
take into account by allowing the diffusion coeScients in

the two directions to be different.
Equation (6) is straightforwardly analyzed by the

DRG method. %e find the one-loop term in the recur-
sion relation (5) to be 1(dj,d, ) —d, (19—3d ~ ) —(16
—9d~+d~), where dj = I+d». It changes sign at
d,*=0.24 along the critical line d=2. For 1» d, & d,*,
we have l(d =2) )0, and the system flows to strong cou-
pling as in the KPZ limit (d, =1). However, for d,
(d, , the nonlinearity is irrelevant. There, the series of

approximations leading to Eq. (6) are no longer valid as
various components of u become comparable. In fact, in

the limit d, =0, Eq. (6) becomes the DDS with aniso-

tropic noise [5], which actually belongs to a universality
class different from the d, =0 limit of Eq. (3) (DDS with

isotropic noise). Nevertheless, we expect the result for

d, & d,* to be good, and find that the KPZ-like strong
coupling behavior dominates for —

4 of the way along
the critical line.

To obtain the boundary of the strong coupling region
away from the critical line d=2, we will need to carry
out the DRG calculation to higher order. However, we

may use the full one-loop result to get a "feel" of the
boundary in the vicinity of the critical line. Solving for
the root of 1(d&,d,*)=0, we obtain a tentative boundary
which is sketched in the space of generalized dimensions

(d~, d, ) to guide the eye (see Fig. 2). The result suggests
that KPZ-like behavior is likely to dominate a large por-
tion of the (d~, d, ) space. It is then reasonable to expect
the existence of a phase transition to strong coupling in

the physical dimension (d ~,d, ) = (2, 1). However, nu-

merical simulations of Eq. (6) in the physical dimension
are needed to make a definitive conclusion.

In the remaining part of this paper, we shall assume
that a phase transition for the driven line liquid does exist
in three dimensions and explore its consequences. Pic-
torially, the transition is between a line configuration de-
scribed by the three-dimensional generalization of Fig.
1(a) at small driving force J„to the one described by the
generalization of Fig. 1(b) when J, is increased beyond a
critical value J,'. [The actual value J;-v3t /D't p"(Bo)
will depend on the specifics of material and bias condi-
tions. ] If we view the lines as the streamlines of a fluid

flow, then the two phases correspond to laminar and tur-
bulent flows, respectively. The laminar phase is described
by the linear theory [4]. However, the turbulent phase is

much more complicated. From experience [6,15] with
the KPZ equation in three dimensions (d&, d, ) =(1,2),
we expect both the renormalized diffusion coe%cient and
noise amplitude to diverge algebraically in the infrared

2

&~ KPZ

DDS

FIG. 2. The space of generalized dimensions (d~, d, ). The
dashed line is the line of critical dimensions d~+d, =2. The
dotted line is a tentative boundary separating the KPZ-like and

the DOS-like dynamics (see text). The physical dimension of
interest is marked by the asterisk.
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limit k 0. These anomalies will lead to a singular
structure factor. They will also give anomalous
dynamics —the response of the system will spread faster
than Jt for diffusion. Critical properties associated with

the transition itself are also of interest. The nature of
this type of phase transitions has been discussed in detail
elsewhere [13]. Here we merely point out that associated
with a diverging length scale at the critical point, we ex-
pect singularities in global quantities such as the renor-
malized Eo in Eq. (3), i.e., Eo(sing) —(J, —J;)
Such singularities should be detectable from simple I-V
measurements.

As mentioned at the beginning of this paper, we expect
the qualitative features of the driven dynamics discussed
here to be applicable to a generic line liquid. It will be
interesting to reexamine the proliferation of vortex loops
in experitnents of driven superfluid helium [16] in light of
the phase transition discussed here. In addition to line

liquids, the dynamics [Eq. (6) in particular) explored
here provides a convenient link between the KPZ and

DDS dynamics, which are two of the simplest generaliza-
tion of the diffusion equation, and have appeared in a
wide variety of nonequilibrium problems. This link may
be exploited to obtain a perturbative access to the strong
coupling fixed point itself.
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