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We report results from computer simulations of the kinetics of domain growth and wetting in a binary
liquid mixture contained inside a model porous medium which has an interconnected and tortuous struc-
ture resembling Vycor glass. We find that the growth process slows down dramatically when the average
size of the domains is comparable to the average pore radius and dynamical scaling breaks down at late
stages. We argue that the random-field model cannot be invoked to explain these results. On the other
hand, the single-pore model seems to be reasonably successful in explaining the source of this slow

growth.
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Macroscopic phase separation takes place when a
binary liquid mixture is quenched rapidly from one-phase
region to a point inside the coexistence curve [1]. For
critical quenches, it has been found experimentally [2,3]
that the intermediate stage can be described by a
diffusive growth mechanism [4] while hydrodynamic
effects [5] become important at late stages. It is also well
established that when domain sizes are much larger than
the interfacial thickness, there is only one dominant
length scale in the system and this results in a time-
invariant master curve for the scattering intensity.

The above course of phase separation is completely al-
tered when the fluid mixture is contained inside a porous
medium [6-9]. In this case, phase separation does not
proceed to a macroscopic scale and many small micro-
domains rich in either of the two components are formed.
The theoretical understanding of this lack of macroscopic
phase separation is incomplete. Two very different
theoretical interpretations can be found in the literature.
The first one suggests [10] that the preference of the ran-
dom pore surface for one of the components of the mix-
ture manifests as a random field in the problem, which
gives rise to the metastability and the slow kinetics of
domain growth seen in experiments. Recently, this
random-field description has been criticized [11] to be
inapplicable in the case of low-porosity media such as the
Vycor glass. It has been argued theoretically that a
single-pore model without any randomness can be used as
a model system to understand various effects observed in
experiments with Vycor glass. This single-pore model al-
lows for various long-lived metastable configurations
(called *‘plugs” and “‘capsules”) depending on tempera-
ture and the strength of the interaction of the pore sur-
face with one of the components of the mixture. Monte
Carlo simulations have been carried out recently [12]
which support the presence of these metastable con-
figurations. Simulations in this single-pore model also
suggest [13] that the kinetics of domain growth slows
down radically when the average domain size and the
pore radius become comparable.

The single-pore model does not seem to be a realistic
description of the phase separation process in high-
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porosity medium (such as various gels) which is consti-
tuted of a dilute network of strands. There is some evi-
dence from experiments that the random-field model may
be applicable for phase separation in such a medium [14].
Even for a low-porosity medium, such as the Vycor glass,
it is not clear a priori that the single-pore model contains
all the necessary physics since the interconnected struc-
ture of the confining geometry might play an important
role in the phase separation process by creating extra bar-
riers to domain growth. These issues are, however,
difficult to resolve completely in experiments since it is
difficult to find real systems with a widely varying porosi-
ty, pore size, and surface affinity for one of the com-
ponents of the mixtures. Clever computer simulations, on
the other hand, could play a very important role by a sys-
tematic isolation of the important parameters controlling
the growth process and morphology of the domains.

With this in mind, we have carried out large-scale
simulations of the kinetics of domain growth process in a
model porous medium of quite high porosity (about
75%). The novelty of this study is that the porous medi-
um considered here has an interconnected and tortuous
structure resembling Vycor glass, although the porosity of
the model system is much higher than in commercially
available Vycor glass. The binary mixture in our simula-
tions is contained inside the pore region of this model
porous medium. The kinetics of phase separation of such
a mixture is then numerically studied using a Cahn-
Hilliard description [1] with proper boundary conditions
to incorporate the presence of the porous medium. We
have studied the process of domain growth in both the
presence and absence of surface fields which stands for
the interactions of the pore surface with the components
of the mixture. Our main result is that the interconnect-
ed and tortuous geometry of the porous medium creates
barriers to domain growth. Even in the absence of any
surface interactions we find that the domain morphology
consists of a large number of plugs and the growth pro-
cess slows down dramatically when the average size of the
domains is comparable to the average pore radius, as pre-
dicted by the single-pore model [11]. We also find that
there are many length scales present in the system and
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that dynamical scaling breaks down at late stages. Since
a prerequisite for the random-field description is the pres-
ence of a preferred attraction of one of the components to
the pore surface, these results clearly demonstrate that
the random-field model cannot be invoked to explain the
nonalgebraic domain growth and the breakdown of the
dynamical scaling in this case. On the other hand, the
single-pore model seems to work reasonably well in ex-
plaining the slow domain growth seen in the simulations.
We find similar results of slow domain growth and a
breakdown of dynamical scaling when the surface field is
present, although the domain configurations are quite
different now showing the presence of a wetting layer.

An important ingredient in our simulations is the con-
struction of the porous medium whose structure would
resemble a real system. We followed commercial
methods of making Vycor glass in this context. Vycor is
made commercially by quenching a borosilicate glass into
the spinodal region and then etching out the softer phase
with acid such that all the pores are interconnected. In
our two-dimensional model, we start from a 256 X256 lat-
tice consisting of a 50-50 mixture of two components and
model the quenching process by a cell-dynamics [15]
simulation method. We have stopped the phase separa-
tion process after a reduced time of  =1000 and “etched
out” one of the two phases. This creates an interconnect-
ed morphology of the “pores” if one uses a cutoff value of
0.97 for the order parameter for the “etching.” We find
that the “porosity” of this system is about 75% with an
average pore radius of about 15 lattice spacing [16]. This
model porous medium is shown in Fig. 1 where the white
region corresponds to the pores and the black region cor-
responds to the solid material or “glass.”

Once the porous medium is constructed, we start from
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FIG. 1. The model porous medium constructed by a cell-
dynamics simulation [15] method (see text). The white region
corresponds to the “‘pores” and the black region corresponds to
the “glass.” The *“‘porosity” of this system is about 75% with an
average pore radius of about 15 lattice spacings.

a critical mixture of two components 4 and B which is
confined in the pore region. We then model the domain
growth process in this porous medium by numerically in-
tegrating the Cahn-Hilliard equation for the order pa-
rameter. In the Cahn-Hilliard model, one considers a
concentration field, y(r,z), which represents the differ-
ence in the local concentration of the two components of
the mixture. It is assumed that the time variation of this
conserved field is governed by the functional derivative of
a free-energy functional given in terms of a Ginzburg-
Landau expression. After suitable rescaling of distance,
time, and concentration field [17], the resulting equation
of motion is
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FIG. 2. (a) Domain morphology in an 80% 80 section of the
full 256x256 system in the absence of any surface field. The
white and the shaded regions correspond to the two phases of
the binary mixture and the black region corresponds to the
“glass.” The domains are formed in the shape of “plugs” (Ref.
[111). (b) Same as in (a) except in the presence of surface field
of strength A =1. Note the presence of a wetting layer around
the “glass” surface.
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dyirt) ;l;’t) =3V —y+y-Viyl, (n
where we have not included thermal fluctuations in the
above equation. Our results, then, would correspond to a
very deep quench. The boundary conditions imposed are
the following. First, no flux is allowed through the im-
penetrable glass region. This preserves the global conser-
vation law for the order parameter. Second, the presence
of a surface field is handled by imposing the following
mean-field type boundary condition on the order parame-
ter:

Vy-Ai=h (2)

at the glass surface.

We have numerically integrated the above equations
using a finite difference scheme with a mesh size Ax =1
and a time step At =0.025 up to a final rescaled time of
tmax =50000. The initial values of y are uniformly and
randomly distributed between —0.1 and 0.1. We have
considered two cases for the surface interactions— one
with no surface field and the other with surface field
strength A =1. In each case the results are averaged over
twenty realizations of the initial conditions. Domain
morphology in an 80X%80 section of the system is shown
in Figs. 2(a) and 2(b). In the first case there is no sur-
face field and the domains are formed in the shape of
plugs at late times which slows down further growth. In
the latter case h =1 and a wetting layer around the glass
surface is present. Domain growth is also slow in this
case and dynamical scaling breaks down as well. It seems
that, the presence of wetting layers around the random,
interconnected geometry of the glass surface creates bar-
riers to further growth process and leaves the system with
many different length scales.

For a quantitative description of the kinetics of this
domain growth process, we compute the pair-correlation
function

g(r,t) =(y(r)y(0)), —(y)?, 3)

where the average is with respect to different realizations
of the initial conditions. We also compute the structure
factor S(k,z) which is the Fourier transform of the pair-
correlation function. In the above computations, the or-
der parameter is considered to have a value of zero at the
location of the glass. As a measure of the average
domain size we compute the location of the first zero
(Rg) of the correlation function. In Fig. 3 we plot InR,
vs Inz both in the absence and presence of the surface
fields. In each case, growth becomes very slow and possi-
bly slower than a power law as the average domain size
becomes comparable to the average radius of the pore
size. This has been predicted in the single-pore model
[11] as a manifestation of the breakdown of the Ostwald
ripening process [1,4].

The nonalgebraic growth law seen above suggests that
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FIG. 3. Log-log plot of the average domain size Ry(¢) vs t in
both the absence and presence of the surface fields. In each
case the growth seems to be slower than a power law when the
average domain size is comparable to the average pore radius
(about 15 lattice spacings).

there is more than one length scale in the problem due to
the presence of the porous medium. This might lead to a
breakdown of the dynamical scaling behavior. We have
tested the scaling hypothesis [1] for the structure factor
for h =0 as shown in Fig. 4. It is clear from this figure
that the data are quite scattered even in the late stages
and curves for different times do not fall on a single mas-
ter curve. Thus, the scaling hypothesis seems to break
down during the growth process. We find a similar be-
havior in the case of h =1.

To conclude, we have studied the kinetics of domain
growth in a model porous medium of high porosity.
When the domain sizes are comparable to the average
pore radius, we find nonalgebraic domain growth and a
breakdown of dynamical scaling behavior even in the ab-
sence of any surface fields. This arises due to the tortu-
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FIG. 4. The scaling hypothesis [1] for the structure factor is
tested for & =0 by plotting S(k,1)/R,(1)? vs kR,(t) for various
times during the evolution. Dynamical scaling seems to break
down during the growth process.
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ous geometry of the system which creates barriers to
domain growth. In the absence of the surface field there
is no preference for the surface by any one of the com-
ponents and the basic mechanism for the random-field
description of the growth process breaks down. This
strongly suggests that the random-field model may not be
applicable to explain slow domain growth kinetics in a
porous medium even with this high porosity. On the oth-
er hand, the single-pore model seems to be reasonably
successful in explaining the source of this slow growth as
the absence of the evaporation-condensation (Ostwald
ripening) mechanism when the average domain size be-
comes comparable to the pore radius. Although the
simulations are carried out in two dimensions, we expect
that the results will be applicable in three dimensions as
well, since the same mechanism of breakdown of the
Ostwald ripening will be present in three dimensions.
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