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Transition to Phase Chaos in Directional Solidification: A Two-Mode Interaction Picture
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Interface dynamics are analyzed in directional growth of liquid crystals in a two-mode interaction pic-
ture. We find that this simple model retains many interesting features observed experimentally includ-

ing order and chaotic motion. We discover that the parity-broken mode undergoes an instability charac-
terized by a permanent hopping between q and 2q states (where q is the wave number). On increase of
the two-mode coupling the interface motion enters a chaotic regime via a quasiperiodicity route. Chaos
manifests itself by an erratic change of the drift direction of the pattern between left and right. We ten-
tatively call it "phase chaos. "

PACS numbers: 61.50.Cj, 05.70.Fh, 68.70.+w, 81.30.Fb

Since the discovery by Simon, Bechhoefer, and Lib-
chaber [1] of the so-called "solitary mode" during direc-
tional growth of nematic crystals, the problem of inter-
face dynamics has gained renewed interest. This type of
growth is characterized by the existence of a few parity-
broken (PB) cells that are approximately twice as wide as
the symmetric ones and travel at constant speed trans-
versely to the growth front. Soon after this discovery it
became clear that this dynamical manifestation is com-
mon to a large variety of one-dimensional pattern-
forming systems [2-6]. Another seemingly generic
feature pertains to the so-called "vacillating-breathing"
(VB) mode where the cell width oscillates in phase oppo-
sition with its neighbors [3,7-10]. On variation of exter-
nal constraints the system often seems to develop an ir-
regular pattern, an irregularity which was tentatively
called chaos [3,5,7-10].

An important first step toward the understanding of
the parity-broken state was made by Coullet, Goldstein,
and Gunaratne [11] who suggested that parity breaking
results from the loss of stability of the initially symmetric
state. It was shown later that the "microscopic" models
of growth do indeed support parity-broken solutions ex-
tending along, and moving transversely to, the whole
front [12,13].

More recently [14] a more extensive analysis of inter-
face dynamics has been made possible by focusing on the
"large growth velocity" regime explored by experiments
on liquid crystals [7]. Indeed, in this regime the bound-

ary integral equation reduces to a local equation which
naturally is much simpler for the analysis [15]. It has
been shown [14] that this equation possesses symmetric
steady solutions, PB and VB modes. An interplay be-
tween PB and VB modes causes the interface to enter a
chaotic regime via quasiperiodicity. As mentioned in a
previous article [14], the front profile is mainly composed
of the fundamental and the first harmonic. This observa-
tion strongly suggests that a description in terms of two
modes should be sufficient to capture the essential
features of interface dynamics including chaotic behavior.

Such a model would provide a much simpler tool for the
understanding of the complex system dynamics in a cer-
tain region of phase space. The main purpose of this
Letter is to deal with this question.

We find that besides parity-broken states, the two-
mode interaction model accounts for the existence of an

oscillatory mode that has not been discussed before. This
new growth mode results from an instability of the PB
state and is characterized by a permanent hopping be-
tween q and 2q states, while the cells globally drift side-
ways. For certain parameter values the two modes (the
traveling mode and the oscillatory one) maintain their
identity: The system behaves in a quasiperiodic manner.
A change in the parameters leads to a mode-locking state
before the dynamics enter a chaotic regime. Chaos mani-
fests itself essentially as erratic behavior of the phase of
the fundamental harmonic: The front erratically drifts to
the left or to the right. This chaotic motion difters from
the one discovered in [14]: There the second "oscillator"
that mixes to the PB one is of VB type, while in the
present case it is the one associated to the q 2q hop-

ping that couples to the PB mode. This supports the idea
that the transition to chaos involving quasiperiodicity
should be generic for systems with PB states, regardless
of the specific nature of the second oscillator.

Our starting point is the evolution equation of the front
profile g(x, t) derived in the quasilocal regime of direc-
tional growth of liquid crystals [15]:
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The only parameter that remains in this equation, l~, is

proportional to G/V, where G is the applied thermal gra-
dient and V is the growth speed. The proportionality co-
efficient depends on material properties only [15].

In order to derive the coupled-amplitude equations
from Eq. (I) we expand the interface position in Fourier
series ((x,t) =Ao(t)+g„-i[A„(t)e'~"'+c.c.]. Inserting
this expression into Eq. (1), we obtain a general equation
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with

L(q) = +4q +(3q —8q2+8(T ')d', d
dr
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b, c, and d are polynomials. Setting n =1 and n =2 into Eq.
for Al and A2.
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(2) we can write the following set of amplitude equations
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The coefficients appearing in Eqs. (4) and (5) are related
(

to the control parameter lT ' and to the wave number q,
and are easily derived. It is important to mention that
these coefficients have been renormalized by the higher
harmonic amplitudes A3 and A4. Indeed, in order to per-
form a consistent expansion we must keep in the develop-
ment of Eq. (2) all terms up to the third order in A
(where A eeA|,A2). Thus, as A3eeA|A2 and A4cx:Af, as
a result of translational invariance, the terms like A2A3
and A2A4 appearing in Eq. (2) for n=1 and n =2, re-

spectively, must be taken into account. Ao obeys a de-
tached equation, 817 'Ao 4q (A 1( +64q IA2(

In order to study this two-mode interaction system it is

useful to write the complex amplitudes Ai and A2 as
ale' ' and a2e' ', respectively. Substituting in Eqs. (4)
and (5) and equating real and imaginary parts, we obtain
a system of four coupled equations for the amplitudes

al, a2 and the phases pl, o2. The result emerging from the
analysis of this system is summarized by the bifurcation
diagram shown in Fig. 1. This diagram is a plot of the
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FIG. 1. Bifurcation diagram for 1p ' 0.28 showing M+,
M, and P branches, and the parity-broken state solution
(PB). Stable branches are represented by solid lines and unsta-
ble ones by dotted lines.

real amplitude a2 against the wave number q for a given

value of IT '. The basic steady branches are the "mixed"
modes (M+ and M ) with both al and a2 nonzero and

the pure "period-doubled" solution P with a 1
=0 and

a2~0. In addition, a parity-broken state solution merges
from the branch M+ at the locus where this one becomes
linearly unstable. This type of diagram has been given

already in [13],and its topology is quite generic.
To check the relevance of the system described above,

we have solved numerically the full equation (1) for sym-
metric and asymmetric states. We found that close to the
codimension-two point (where both q and 2q state modes
destabilize the fiat interface simultaneously), which has
the coordinates lT ' 0.427 and q 0.730, the two-mode
interaction system is almost quantitatively and qualita-
tively accurate. As we move away from this point, the re-
sults differ quantitatively but remain qualitatively in

agreement. Therefore, the overall picture found close to
the codimension-two point should persist in a wide range
of parameters.

An important question is whether the PB mode may it-
self undergo an instability and if so, what type of dynam-
ics would then emerge. We have first analyzed the linear
stability of the PB mode. We find that for /T

' 0.28
(not too far from the codimension-two point) the PB
mode remains stable near the location of its birth

(q 0.85). By decreasing the wave number q down to a
value slightly below 0.76 the PB mode undergoes an oscil-
latory instability. The frequency of oscillations changes
slightly with IT and is approximately of the order of
Im(w) a:0.8.

In order to understand the long-time behavior of the
growing instabilities we must perform a full nonlinear
analysis of the coupled equations (4) and (5). To do so,
we have solved these equations numerically. We use
Gear's [16] backward difference method. This method
has proven to be more appropriate than the usual
Runge-Kutta method, and it is robust against the stiffness
of the chaotic dynamics. We first concentrate on the situ-
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FIG. 3. Fourier spectrum in the quasiperiodic regime at

IT ' =0.28 and q 0.75.
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FIG. 2. Interface dynamics exhibiting both a temporal oscil-
lation (the q 2q hopping) and a global drift of the patterns
due to parity breaking.

ation close to the onset of the oscillatory instability found

from the linear analysis described above. Figure 2 sho~s
the evolution of the interface for lT ' =0.28 and q =0.75
after transients have decayed. As we could expect from
the linear analysis, the interface shows a temporal oscilla-

tory instability. The pattern oscillates in time awhile the
PB mode persists. The oscillatory mode (Fig. 2) is

characterized by a permanent hopping of the front be-
tween a state with wave number q and a state with wave

number Zq. In other words the interface undergoes
periodic tip splitting. We believe this mode of growth is

the origin of the periodic droplet emission in liquid-

crystal experiments [5,7]. In that situation the interface
tip splits periodically. When the amplitude of oscillation
is large enough the grooves pinch off, resulting in the de-

tachment of droplets. Our suggestion is strongly support-
ed by Oswald's experiments where he observes that this

oscillatory regime first occurs in the tilted domain. Of
course the eventual droplet formation occurs for a 2D in-

terface; it is the well-known Rayleigh instability. It can-
not therefore be accounted for in our 1D interface model.

Since the drift of the pattern subsists, each point on the
front is now subject to the oscillation resulting from the
drift with a frequency fi, and to the q 2q hopping
(with a frequency denoted by fz). Indeed the Fourier
spectrum (Fig. 3) reveals sharp peaks at fi and fq All.
the other peaks are either higher harmonics or combina-
tions of the form imfl+nfqi with m, n integers. The

motion is quasiperiodic. The Poincare map (not shown

here) is dense, thus indicating that the trajectories in

phase space cover the torus densely. Then by decreasing
the value of q—which amounts to increasing the impor-
tance of the 2q mode —the interface develops the typical
dynamics of a quasiperiodic system. More precisely, at

q =0.745 a mode-locking state of order 3 appears. The
Poincare map reduces to three distinct points. The inter-
face in the mode-locking situation does not, however, look
fundamentally different from the incommensurate case.
Upon variation of the wave number the motion again be-
comes quasiperiodic but with a much higher density of
trajectories in phase space about the previously mode-
locked state of order 3. At q =0.743 the interface motion
enters a chaotic regime, via a destruction of the torus.
The chaotic dynamics are characterized by an erratic
drift of the pattern between left and right. The spectrum
forms a continuum for low frequencies (Fig. 4).
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FIG. 4. Fourier spectrum in the chaotic regime at IT ' =0.28

and q =0.743.
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Note that since Eqs. (4) and (5) are of second order in

time (and that they are both complex), the total number
of degrees of freedom is equal to 8. However, because of
the translational invariance, p~ and p2 are not indepen-
dent; the appropriate variable is 0=2p~ —p2. Therefore
the number of degrees of freedom is in fact 7. By in-

specting the dynamics of the different degrees of freedom,
we find that a~(t) and a~(t) are "regular" functions of
time in the chaotic regime, while the rest are erratic.
That is to say, the number of degrees of freedom that are
involved in the chaotic regime is equal to 5. In other
words a~(t) and a~(t) simply act as parametriclike exci-
tations. We hope to report on details of this question in

the future.
A surprising feature is that, although the other degrees

of freedom (a2, a2, p1, p2, j~,i2) are chaotic in time, the
combination a2cos(+2) [and consequently a2sin(p2)) is

completely periodic in time. Since the front profile in a
two-mode model can be written as

g = 2a ~ cos(qx+w~ ) +2a2cos(w2)cos(2qx )

—2a2sin(p2)sin(2qx),

only the first term is chaotic via the phase p~. Figure 5
shows the behavior of i~ (the derivative suppresses the
constant drift). We do not have at present an explana-
tion of this "particular" behavior where all information
on chaos is solely supported by the phase p~. It is natural
to refer to this type of dynamics as "phase chaos. " It is

an important task for future investigations to see whether
the understanding of the present chaos can be achieved
with fewer degrees of freedom.

In summary, we have shown that a simple two-mode
interaction model accounts for a large variety of dynami-
cal behaviors. The parity-breaking instability has been
discussed before [13).However, the existence of an oscil-
latory tip-splitting instability is one of the new aspects of
this model. Another interesting property of the model is

that it supports chaotic solutions. A striking feature is

that generically the systems possessing PB modes seem to
transit, when coupled to another oscillator, into chaos via

quasiperiodicity. We believe that this feature is analo-
gous to the one encountered in the Taylor-Couette system
[171. In that system, the incommensurate character of
the two oscillators can be traced back to the underlying-

symmetries. We hope that our work will incite new ex-
periments with the aim to carefully study the possible
transition into chaos.
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