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Surface-Tension-Driven Nonlinear Instability in Viscous Fingers
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We show analytically and numerically that the linearly stable flat interface in the SaA'man-Taylor

problem becomes unstable against finite amplitude perturbations when the surface tension is modified in

proportion to the local curvature. This nonlinear instability is identified with unstable saddle points in a
flow diagram in a weakly nonlinear approximation. Numerical simulations confirm this prediction and
reveal that this instability leads to spiky cellular patterns.
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In studies of the formation of patterns in nonequilibri-
um dissipative systems [1], it is essential to examine the
stability of the advancing front against perturbations.
Theoretically, the instability is usually detected by a
linear analysis, and, to the best of our knowledge, most
instabilities reported thus far, excluding perhaps tur-
bulence, have been found essentially by this method. Ex-
amples along this line include the most widely studied in-

stabilities in the pattern formation field, including the
Mullins-Sekerka instability in solidification [2], the
SaA'man-Taylor instability in the viscous fingering prob-
lem [3], and the convective instability in the Benard prob-
lem [4]. Even though these instabilities all give rise to
very complex patterns, we recognize that they are all trig-
gered by infinitesimal perturbations. We refer to these as
linear instabilities, since one can essentially determine
their existence by a simple linear analysis.

Often there is a control parameter, say P, with a criti-
cal value, P„beyond which the instability sets in. In

some cases, nonlinear analysis reveals a finite amplitude
instability when P is below P„with a threshold amplitude
which vanishes as P reaches critical. Such an instability
is still linear, at least in the sense that its existence can be
detected by linear analysis, even though nonlinear anal-

ysis is necessary to show that it persists as a finite ampli-
tude instability even when the interface is stable against
infinitesimal perturbations.

In this Letter, we report an intrinsically nonlinear in-

stability in the viscous fingering problem with a polymeric
surfactant at the interface. Unlike the linear instabilities
mentioned above, this instability always has a nonzero
threshold amplitude, say 4, . Thus, a simple linear
analysis will miss it completely. As a control parameter P
is increased, A, becomes smaller going to zero as P ap-
proaches infinity, but the critical value is infinity —the in-

stability is never a linear one. For large parameter
values, the threshold amplitude is quite small, and so it is

likely that the instability will in fact occur in the real sys-

tern. Linear stability analysis, however, will predict that
the interface should be stable, and will give no clue as to
the nature of the instability that would be observed.

Considering the fact that all the known instabilities are
linear ones [2-4], we find it unusual to discover such a

finite amplitude instability in the context of the Saffman-
Taylor (ST) problem, which continues to play an impor-
tant role in pattern formation [1,5,6]. Numerical simula-

tions confirm that the flat interface indeed becomes un-

stable and breaks into a cellular pattern. These cells,
however, are not similar to those seen in directional
solidification (DS); instead they are arrays of spikes, with

the sharp points extending forward [Fig. 4(b)]. Thus the

instability we have found is not an instance of the known

analogy [7-9] between the ST problem and DS. More-
over, these patterns arise only as a result of a finite ampli-

tude instability, whose onset can only be detected by a

nonlinear analysis.
Our starting point is a set of equations of motion for

the fingering instability in a linear Hele-Shaw cell with

impermeable side walls. The dynamic field is the pres-

sure P that satisfies the Laplace equation everywhere in

the cell V P =0, and the velocity is given by
v„= —(V P)„. The pressure at the interface is P = —etc,

with y the surface tension and x the curvature. Suppose
now that surface tension itself is locally proportional to
the curvature K. This might be realized by introducing
diblock copolymers or surfactants, consisting of hydro-

phobic and hydrophilic groups, into the system. The
effect of this new species at the interface on the dynamic
instability might be complex. But in the limit where the
segment length of one species is much larger than the
other, it is entropically unfavorable to pack polymers in a

region with negative curvature (Fig. 1) and so the poly-
mer concentration might be locally perturbed in propor-
tion to the curvature. Further, if polymer distribution re-

laxes on a time scale which is short compared to that of
the interface motion, then the polymers will always be in
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FIG. 1. (a) Polymers with hydrophobic tail and hydrophilic
head group. (b) They arrange themselves at the oil-water inter-
face. (c) Because of entropic reasons, the region of positive
curvature (bump) has slightly more polymers where the surface
tension is locally reduced, enhancing the instability. In this

case, narro~ fingers are observed. U is the pushing velocity in

the direction of the arrow. The nonlinear instability discussed
in the paper occurs when oil pushes water.

local equilibrium and the surface tension, which depends
on the concentration of polymer, will in turn depend on

the local curvature. Ignoring higher-order terms in x, the
effective surface tension is then y' y+ pic, so we have at
the interface

P = —yKptc' —

A negative value of P means that the surface tension is

reduced in regions with positive curvature, which tends to
enhance the fingering instability. If the system is re-
versed, so that the more viscous fluid pushes the less
viscous fluid, the P term helps suppress fingering. On the
other hand, a positive p tends to suppress the instability
when the less viscous fluid pushes the more viscous one,
but tends to produce fingering in the opposite situation.

With p (0, instability is enhanced and we expect nar-
row fingers to emerge if the water pushes oil. We think
this is the reason why the narrow finger was observed
only for the erst time when the cell was washed by soap
containing surfactant molecules [10]. To be more spec-
ific, we briefly present the solvability analysis [1,5]. The
function @(rt) in the solvability function A in Hong and

Langer [5] will contain an additional term in the denomi-
nator, [1+a(1+p rt )/(I+rt ) t ]'t with a=pm(1
—k)/X y=e(1 —

A, ) (0, because the surface tension y
has been changed into y+ pre. There is now a new branch
point in the imaginary axis located at z =i —ib/2 with'
8=[iei(1 —p )] t and thus a narrow finger solution of

exists. The steepest contour that runs from —~
to i must bend to include z, coming back to i, and then
runs away to —~. Applying the resolution criterion de-
scribed in Hong and Langer [5], we obtain the following
scaling relation between a, P, and v=ttb y/12UW (1
—X) '.

v/&'= lel"'(I —2&) '".
Since p enters through the tc term, it will have no effect
on the linear stability analysis and thus we must perform
a nonlinear analysis. This can be done in the weakly non-

The next step is to impose the two boundary conditions at
the interface and expand in the amplitudes to obtain the
evolution equation for the g;„(t).

Our most interesting results are obtained in the case
when the more viscous fluid pushes the less viscous one,
for which the amplitude equations can be obtained from
those usual cases of the less viscous fluid pushing the
more viscous one by simply replacing t, y, and P by —t,—

y, and —p. After expanding to third order and trun-
cating to the lowest two modes, we obtain

x = —(1+I )x —(1+I +38)xy+ (1+5I /2) x 3

+ (1/2+ 13/2 —38)xy

y= —2(1+41 )y —38x +4(1+41 )x y

+2(1+7I )y3,

(3a)

(3b)

where x =qgi/2, y =quiz/2, I =yq, and 8=4Pq /3
and the overdot represents a rescaled time derivative, q
xd/dt We now s.eek for the fixed points of this pair of
equations. There is always one trivial fixed point (x,y)
=(0,0), corresponding to the linearly stable flat interface
solution. There are, however, additional unstable fixed

points. Two are located on the y axis, at (x,y) =(0, + a)
with a =(1+4I )/(1+7I ), and the other fixed points
are found by solving

x = [(1+I)+ (1+I +38)y
—(1/2+ 13I /2 —38)y 2]/[1+ 5I /2]

=2y[(1+4I ) (1+71 )y ]l[4(1+4I )y —38] . (4)

Cross multiplying yields a cubic in y, so there exist at
most up to three additional fixed points. However, x
must be real and positive, and so not all three solutions of
the cubic will necessarily be solutions of (4).

We first consider the limit B&&1, flow diagrams of
which are shown in Fig. 2. The unstable fixed points al-
ternate between saddles and repellers, and so the insets of

linear regime, in which the linear growth of the most un-

stable (or least stable) mode is small. The weakly non-

linear regime can be realized by making k, =I/Jy only

slightly larger than ir/2, the smallest perturbation wave

number allowed by the boundary conditions, where k, is

the most dangerous wave number obtained by the linear

analysis. By adjusting the surface tension y via polymer
concentration at the planar interface, the weakly non-

linear regime can be realized. In this limit, all modes ex-

cept the lowest one will be linearly stable, and since the
linear growth rate of the lowest mode is small we expect
that it will saturate at a small amplitude. We may then

expand the interface position g(y, t) in Fourier modes,

g(y, t) =t +p„g;„(t)cos[nq(y + I)], with q =x/2. The
pressure field can be expanded similarly,

P(x,y, t) = —(x t)+Q—Pv(t)e """ "coslnq(y+1)].
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viscous one, so it is clear that the threshold instability is

quite large in practice. It might be interesting to devise
external perturbations that could trigger this instability.

As 8 increases, the fixed points which delimit the basin
of attraction of the flat interface fixed point will move.
Their behavior for large 8 is quite interesting. In the
asymptotic limit of B ~, (4) has two solutions. One
has x = 8 and y =8; the other one is near the origin,
with both x and y of order I/B T.he former is a repeller
while the latter is a saddle. The flow diagram is shown in

Fig. 3. Note that the distance between the flat interface
and the new nearby fixed point is finite for any finite 8,
even though it approaches zero as 8 increases. Therefore,
the flat interface is only unstable to a finite amplitude
perturbation, although the threshold amplitude goes to
zero for large 8. For a sufficiently large 8, it is then pos-

ik (a) 35.0 r
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FIG. 2. Flow diagrams for the two-mode approximation (3)
with boundary condition given by (I). I is a control parameter
that contains surface tension, which increases from (a) to (d):
(a) 0( I" & 0.608, (b) 0.608 ( I & 2, (c) 2 ( I & 3.314, (d)
3.314 ~ I-.

the saddles mark the limit of a finite amplitude instability
of the flat interface fixed point. Experimental results
have always indicated that a flat interface is completely
stable when the less viscous fluid is displaced by the more
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FIG. 3. Flow diagram with B ~. Note the appearance of
two unstable fixed points: one at infinity (B,B~) with p = —,

' and

the other one near the origin (IlB, llB). In the limit B
the flat interface is thus unstable to finite amplitude perturba-
tions.
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FIG. 4. Simulations with P/0. (a) For small B = —200, the
interface is stable. (b) For large 8 = —400, cellular patterns
with sharp tips show up. The parameters used in this run are

q =10, U= —0.025, @=1.0, 8= —400, and amplitude A =0.8.
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sible that fluctuations may be large enough to trigger the
instability. Note that this instability can only be found
theoretically through nonlinear analysis; linear stability
analysis can never even hint at its existence. The cri-
terion for the occurrence of this nonlinear instability is
8»I or equivalently Pq» y. It is not difficult to satisfy
this criterion experimentally by controlling, say, surface
tension.

In order to test the predictions of the above analysis,
we have carried out careful numerical simulations, in-

tegrating the governing equations forward in time. The
numerical code used for this simulation is a modification
of that reported in Ref. [11]. As initial conditions, we

perturb the flat interfaces by a sinusoidal function of a
given wave vector q. The time evolution of this perturba-
tion is then followed. For fixed external parameters such
as the pushing velocity and the surface tension, the inter-
face is stable for small values of 8 or small values of the
amplitude of perturbation [Fig. 4(a)]. It becomes unsta-
ble, however, for large 8 (= —400) and breaks into cel-
lular patterns [Fig. 4(b)l. Note that the patterns are
quite different from those seen in directional solidification
in that the shape around the tip of each unit is quite
spiky. Fixing the value of 8, we observed similar behav-
ior by increasing the amplitude of the initial perturbation.
Finally, fixing both 8 and the initial amplitude, we ob-
served this instability by increasing the initial wave vector
q. These observations are in qualitative agreement with
the results of the weakly nonlinear analysis. Note that
these cellular patterns arise because of changes in the
surface tension, and thus we expect that any perturbation
that changes the pressure boundary condition, like (1),
could produce the same effect [12].
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