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Chaotic Billiards Generated by Arithmetic Groups
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It is known that statistical properties of the energy levels for various billiards on a constant-negative-
curvature surface do not follow the universal random-matrix predictions. We show that nongeneric be-
havior of the systems investigated so far originates from the special arithmetic nature of their tiling
groups, which produces an exponentially large degeneracy of lengths of periodic orbits. A semiclassical
study of the two-point correlation function shows that the spectral fluctuations are close to Poisson-like
ones, typical of integrable systems.

PACS numbers: 05.45.+b, 02.20.+b, 03.65.—m

The spectral fluctuation properties are now largely
trusted as significant tests of underlying classical chaos in

quantum dynamics. It was conjectured in [1] that for
classically "enough chaotic" systems the energy levels

should be distributed according to the predictions of the
canonical random-matrix ensembles (RME) [2-4]
characterized by level repulsion and long-range rigidity.
This "universality conjecture" was checked later for
many conservative systems and seems to be well con-
firmed (see, e.g., [3]). For time-reversal-invariant sys-
tems the expected ensemble is the Gaussian orthogonal
ensemble (GOE), whereas for classically integrable sys-
tems the pattern of energy levels locally mimics a Poisson
distribution [5].

Dynamical systems defined by geodesic motion on a
compact surface of negative curvature are historical [6]
and matheinatical paradigms of classical chaos: Indeed,
the induced Riemannian metric generates ergodicity, hy-

perbolicity, exponential decay of correlations, etc (see.
e.g. , [7]). We therefore expected to observe the universal
RME fluctuation properties for their quantum analogs.
The first large-scale computation of quantum spectra for
polygonal billiards tiling the hyperbolic plane under a
group of reflections surprisingly exhibited fluctuations
closer to those of a Poisson spectrum than to a GOE one
[8], whereas nontiling billiards behave according to the
universality conjecture. Further numerical studies for
various other systems tessellating the pseudosphere seem
to confirm this "anomalous" behavior [8-13].

The main purpose of this Letter is to clarify the situa-
tion by studying a very special subclass of hyperbolic sys-

tems, namely, triangle billiards tiling under the action of
so-called "arithmetic groups.

" The relevance of these

groups stems from the fact that all tiling triangles con-
sidered so far, which display the quantum nongenericity,
belong to this class. Arithmetic groups behave among all

discrete groups more or less as integers among rational
numbers. The unusual features of the spectrum are
linked with the number-theoretical properties of these
groups. Indeed it will be shown here that dynamics gen-
erated by such groups exhibit exponentially large degen-
eracy of the lengths of periodic orbits. It is the cumula-
tive interference of periodic orbits with the same length
which leads to nongeneric energy-level statistics.

On the contrary, an example of a tiling but nonarith-
metic triangular billiard shows a good agreement with

GOE statistics.
A necessary and sufficient condition for a triangle to

tessellate the hyperbolic space under reflections on its
sides is that its vertex angles should be equal to rr/n,

where n is any integer [14]. In the following, any such
tiling triangle with angles (n/m, n/n, n/p) will be denoted

by (m, n,p). Three tiling triangles were considered in

[8,10,11]: (i) (2,3,8), which is obtained by complete
desymmetrization of the regular octagon [7]; (ii)
(2,3,~), which is half the modular domain (see, e.g. ,
[14]); and (iii) (2,4,6), which was supposed to be taken
at "random. "

About 1700 quantum levels (with Dirichlet boundary
conditions) were computed for each of those three bil-
liards. In all cases, a considerable deviation of the spec-
tral fluctuations from the GOE predictions was found.
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As an illustration, Fig. 1 (taken from [11])displays the
A3 statistics (a measure of the degree of spectral rigidity
[2-4]) and the integrated nearest-neighbor spacing distri-
bution for the triangle (2,3,IIo). As the energy is in-

creased, the results approach more and more the Poisson
curve, i.e., strongly depart from GOE. Similar results
were obtained in [9] for the spectrum of the Laplace-
Beltrami operator on a genus-2 surface corresponding to
functions invariant under the action of the regular octa-
gon group.

On the contrary, the expected universal behavior was
observed for nontiling billiards. For instance, the spectral
properties of two triangles with angles (tr/2, 17tr/50, 0)
and (tr/2, tr/8, 67tr/200) [10] were considered and found
to be in good agreement with the generic GOE behavior
[IS].

These results emphasize the quantum nongenericity of
the quoted tiling billiards, associated, as will be shown

now, with very special discrete groups, the so-called arith-
metic groups. The fact that at least some of these groups
could have quantum and classical peculiarities has been
known for a long time [16] but has not attracted wide at-
tention.

Arithmetic groups are in some sense a generalization of
the modular group, where instead of the (usual) integers
there appear the integers of a certain (real) algebraic
field. As precise definitions are quite tedious we shall
omit them here, giving only main ideas. Details can be
found, e.g. , in [17].

Algebraic fields are constructed by adding to the field
of ordinary rational numbers (denoted by Q) a root u of a
given polynomial of finite degree:

u"+a„,u" '+ +ao —0, (1)
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FIG. 1. The integrated nearest-neighbor distribution for

1700 energy levels of the triangle (2, 3,~); the dashed curve

corresponds to the GOE distribution, and the dotted one to the

Poisson. Inset: The h, 3 statistics for the same triangle; the

straight line corresponds to Poisson, and the curved one to

GOB.

where all coefficients belong to Q. Every element of the

field can be written as a linear combination of all powers

of u up to n —
1 with coefficients in Q:

z =mo+m ~u+ . . +m„ (2)

In what follows we shall consider totally real fields
where all roots of Eq. (1) are real and different. The sub-

stitution of another root u~ of this equation instead of u is

called an automorphism of the field and will play an im-

portant role belo~. The integers of this field are defined
in a similar way but the coefficients mt, should be such
that z obeys a polynomial equation with integer coefti-
cients, the dominant coefficient being 1 as in Eq. (1). In

simple cases all mk are the usual integers (or proportional
to them).

Having defined the real field one can construct the so-
called quaternion division algebra by considering ma-
trices of the form [181

/

X i+X2&Q

Wt(x, X4la )—
(xi+X4Ja )Wb

x, XJa-

where xi, x2, x3,x4, a, b belong to the above-mentioned
field and a, b are chosen such that the determinant of this

matrix is nonzero for any x;~0 from the field.

If this determinant is indefinite (i.e., can be both posi-

tive and negative) but under any of n —I nontrivial auto-

morphisms becomes of definite sign, then the set of ma-

trices (3) with unit determinant where xi, x2, xi, x4 are,
roughly speaking, integers of the field defines a discrete

group of fractional transformations of the upper half

plane [17,18].
All such groups and also all groups having a subgroup

(of finite index) in common with one of those groups are
called arithmetic groups. Knowing the discrete group one

can find its fundamental domain [14,19]. In general it

will be a polygon (each side of it being a geodesic). In

Ref. [20] all triangles (m, n, p) tessellating the plane by
reflections under the action of an arithmetic group were

explicitly enumerated. This list contains 85 triangles, and

it includes all three tiling triangles considered so far
whose quantum spectra possess nongeneric behavior.

The very important property of arithmetic groups is

that the arithmetic structure inherent in their construc-
tion manifests itself in an unexpectedly large multiplicity

of lengths of periodic orbits. To see it we shall need the

general criterion of arithmeticity proved in [21].
Let y be any matrix of a group. This group wi11 be an

arithmetic group if and only if the following conditions

are satisfied: (i) All tr(y) are contained in the field of in-

tegers of a certain real algebraic field of finite degree.
(ii) For any automorphisrn of this field which changes

~try~ the value of the transformed trace satisfies the in-

equality ( tr y) ~ 2.
The meaning of this criterion is the following. For an

arithmetic group, tu-tr(y) should have the form (2)
where all m; are, roughly speaking, integers and u is a
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gt (Lg(l)
g =

Zl(L I

L/2
-const x

L
(7)

We see that the arithmetic nature of the groups leads to
exponentially large multiplicities of the lengths of period-
ic orbits. For the triangle (2,3,8) this property was ob-
served numerically in [23] and has been proved analyti-
cally in [10,24].

In general, one does not expect such a large exact de-
generacy of periodic orbits, but one should keep in mind
that for any Riemann surface, multiplicities of periodic
orbit lengths are always unbounded [25], though not so
large as in Eq. (7).

In [26] it was shown that the form factor of the two-

point correlation function of energy levels in diagonal ap-
proximation can be expressed as a sum over all periodic
orbits:

axed root of Eq. (1). For fields of degree n one has n —
1

nontrivial automorphisms u uj and the trace of the

matrix becomes

E& =Alp+Pl ~P&+ ' ' ' +PPg„~g&" (4)

According to the above criterion only two possibilities
are allowed for arithmetic groups: all ~tj~ =tp or all

Considering tp and t, as given, one can solve the above
equations for the m;: m; =A;ptp+A;Jt~. (The deter-
minant is nonzero as all u's are different. )

Taking into account that values of m; should be in-

tegers (or proportional to integers) one concludes that
tp =tr(y) takes only a specific set of values:

tp=a;n+p;(y), (5)
where n is an integer, a; are constants, and ~P;(y)~
&const for all y. Besides, there is only a finite set of

such relations.
The geometrical length of a periodic orbit (l) is con-

nected with the trace of the group matrix by well-known

relations [7]: exp(l/2) =~try~+0(exp( —I/2)). From

Eq. (5) one concludes that as L 00, the number of
different lengths of periodic orbits with l & L is propor-
tional to the number of integers less than exp(L/2):

Ndjff (cps)h (l &L)-c onst&&exp( L/2). (6)
It is known [22] that for any hyperbolic model the total
number of periodic orbits with lengths less than a given
value is N«&(l & L) -exp(L)/L as L

Let g(l) be the multiplicity of periodic orbits with

length I; then these equations imply that the mean multi-

plicity is

K(t) =de(t —t*) . (10)

For Poisson statistics K(t) should always equal d;
therefore, for arithmetic systems the two-point form fac-
tor, within applicability of the diagonal approximation,
quickly jumps just to the universal saturation value.
Though we cannot exclude oscillations near this value,
the form factor for arithmetic systems is undoubtedly
much closer to the Poisson prediction typical for integr-
able systems than to any of standard RME conjectured
for generic ergodic systems.

N{s)

0.5

t: 1/k « t ~ tE, when one can ignore the interference be-
tween trajectories with diferent actions. The time tE is

called the Ehrenfest time and in our case it can be es-
timated as follows. To be sure that after a smoothing
which is implicitly assumed in Eq. (8) the contribution
from off-diagonal terms is small, the difference in actions
between nearby trajectories should be not too small:
AS/h ~ const. Using (6) one concludes that it is neces-
sary to include all trajectories up to l,„determined from
the equation k exp( —l~,„) const which is equivalent to
tE =I,„/k —(Ink )/k.

For generic systems the multiplicity comes exclusively
from the time-reversal orbits and one obtains [26] a con-
stant slope for K(t) which is in agreement with standard
RME. But for arithmetic systems the exponentially large
exact multiplicities given by Eq. (7) lead to

K abyss(t) =const x eke/&/k

So the form factor K(t) for arithmetic systems grows
much faster than was usually assumed and within a time
t of order of the Ehrenfest time it becomes of the order
of l. It is known [26] that for t ~, K(t) d, where d
is the mean level density (which is a finite constant for
hyperbolic models with discrete spectra).

As k Do a good approximation for K(t) is just the
step function:

where g(T~) is the degeneracy of periodic orbits with
period T~. In our cases, as le ~, A~ =I~exp( lz/2)/—
kn [7], and T~ =l~/k, where l~ is the geometrical length
of the trajectory and k is the momentum. The validity of
the diagonal approximation is restricted to small values of
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FIG. 2. The same as Fig. l but for the triangle (2,5,).
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It has been shown above that for arithmetic systems,
due to the existence of many periodic orbits with exactly
the same lengths, the statistical properties of the spec-
trum deviate from predictions of the random-matrix
theory and are close to the ones typical of integrable sys-
tems. Since the number of arithmetic triangles is finite,
most of the tessellating triangles are nonarithmetic. We
consider one such triangle, namely, the triangle with an-

gles (tr/2, tr/5, 0), and compute 1700 levels with Dirichlet
boundary conditions. The results are presented in I.ig. 2.
It is seen that the fluctuation properties of this triangular
billiard are in a good agreement with GOE predictions
(at least, much better than for an arithmetic system as in

Fig. 1).
Yet the numerically computed degeneracy of lengths of

periodic orbits for this triangle seems to be growing, but
its increasing rate is much smaller than for arithmetic
systems. Whether it means that level statistics at higher

energy will be nonuniversal even in this case requires fur-

ther investigation.
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