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Effects of Dephasing and Dissipation on Quantum Noise in Conductors
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We consider the nonequilibrium quantum noise of electrical current in one-dimensional conductors,
and clarify the mechanism that distinguishes macroscopic conductors from mesoscopic conductors. The
noise does not become of the macroscopic type even when a strong dephasing is introduced. Macroscopic
noise is obtained only when the energy of the total electron system is maximally dissipated when each
electron traverses the conductor. Energy transfer from the electron system to other systems is therefore
essential for noise suppression and for the noise to be macroscopic.
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Current fluctuations at thermal equilibrium are related
to the linear conductivity by the fluctuation-dissipation
theorem, and this equilibrium noise becomes negligible at
low temperatures. In the presence of transport, however,
a nonequilibrium noise appears. This noise increases
with current and does not vanish even at zero tempera-
ture [1]. The nonequilibrium noise has in general no sim-

ple relationship to the linear transport coefficients, and a
noise formula has been obtained only for systems with

perfect quantum coherence [1]. To compare the noise
level among conductors of different conductivities, we
characterize the noise level by a "noise figure" W define
as the ratio of the actual noise level to the shot-noise level

[see Eq. (3)]. In terms of W, the nonequilibrium noise
for a one-dimensional mesoscopic conductor at zero tem-
perature [1] is characterized by

W=1 —T,
where T is the transmittance determined by potential
scatterers in the conductor. This formula assumes that
the conductor is perfectly coherent and that the reservoirs
connected to it are ideal [see Eq. (21)]. If the length L of
the conductor is increased, T eventually goes to zero and
W approaches unity, i.e., Eq. (I) predicts that the none-
quilibrium noise would approach the full shot noise. It is
well known, however, that W((1 for macroscopic con-
ductors [2]. In this Letter, we resolve this apparent con-
tradiction by analyzing how dephasing and dissipation
affect the nonequilibrium noise, and we clarify the mech-
anism that distinguishes macroscopic conductors from
mesoscopic conductors [3].

Macroscopic regime Suppos. e—that we have a (statist-
ically) uniform conductor of infinite length, and that by
cutting the conductor we obtain conductors of various
lengths L. There must exist some characteristic length
L„ that distinguishes mesoscopic conductors (L«L„)
from macroscopic conductors (L »L„). First, let us
derive the L dependence of W in the macroscopic regime.
Consider two conductors of length Li and L2 (Li,L2
»L„). By putting them together, we obtain a conductor
of length L ~+L2. Since both the voltage fluctuations and

the resistance are additive for macroscopic conductors,
we immediately find

Li W(Li)+L2W(L2)
W(L, +L,) = (L i,L2»L„) .

(L. , +L.,)'
(2)

Hence, if L is doubled, W is reduced by a factor of 2.
The same conclusion was obtained previously [4]. We
thus find that in the macroscopic regime W decreases
monotonically with increasing L, which is consistent with

the fact that W«1 for macroscopic conductors. Howev-

er, as we will see later [Eq. (18)], Eq. (2) does not hold

in most regions of interest, where W is not very small and

L/L„ is not so large. Moreover, as mentioned above, Eq.
(1) predicts the contradictory behavior of W 1 as
L ~. To resolve these problems, we shall derive a for-
mula for W in the intermediate region where L -L„. We
shall also clarify the mechanism by which W is sup-

pressed, and thereby find the characteristic length L«.
To simplify the discussion, we will restrict ourselves to a
one-dimensional two-terminal conductor at zero tempera-
ture.

Model. —Equation (I ) was derived by neglecting any
interactions of electrons with other electrons, or with pho-
nons, photons, or magnetic impurities, etc. When these
interactions are taken into account, the lifetime i~;f, of a
one-body electron state becomes finite. For mesoscopic
conductors, however, a more important time scale is the
phase relaxation time r&, which is usually longer than

r~;t, [5]. We will show later that there is another impor-
tant time scale z,~„, which is the time spent by an electron
of energy hp above the Fermi energy before it relaxes
onto the Fermi surface [see Eqs. (16) and (17)]. To
demonstrate that the dephasing process plays a role com-
pletely different from this energy-relaxation process, we

employ a model in which z& can be shortened while keep-
ing r,h long. That is, we consider conductors with mag-
netic impurities and electron-phonon interactions. As the
concentration of the magnetic impurities is increased, the
spin of an electron will be flipped by the impurities. This
disturbs the electron interference, so that r& is shortened
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while the energy of the electron is preserved. On the oth-
er hand, the electron-phonon interaction induces phonon-
emission processes and thereby determines z,i„.

Following the standard technique [6], we suppose that
perfect leads 1 and 2 of equal length L, are connected to
the conductor of length L. We decompose the Hamiltoni-
an as H=H, +Hp+V, p+H +V, , where H, and Hp
are the Hamiltonians of renormalized electrons (pola-
rons) and renormalized phonons, respectively, and V,p
is the electron-phonon interaction between these renor-
malized particles. H denotes the Hamiltonian of the
magnetic impurities, and V, the sum of interactions be-
tween electrons and the magnetic impurities, each of
which is assumed to be weak and ferromagnetic [7] so
that the pure-dephasing condition is ideal [8]. That is, to
increase V, , we have to increase the concentration of the
impurities rather than individual coupling strengths [7].
For example, H, is the Hamiltonian of noninteracting po-
larons under an elastic-scattering potential V„which
determines the renormalized transmittance T of the pola-
ron. Hence, if both V,p and V, are absent, W would be
given by Eq. (1) with this renormalized T. Our task is to
evaluate W for nonzero V,~ and/or V, . Since leads 1

and 2 are hypothetically perfect, we assume that
V, = V,p

= V, =0 in these leads. In the following we will

loosely call a polaron an electron.
We consider a steady state, and assume that the

chemical-potential diff'erence is much smaller than the
Fermi energy. Then W can be conveniently evaluated
from

(6N, ) J.(z) ez, (3)
pF ~ lead a

where vF denotes the Fermi velocity, J, the current
operator in lead a (=1,2), and z the coordinate along the
lead. N, gives the number of electrons that carry the net

current during the period r =L,/vF. Its av—erage and vari-

ance are proportional to those of the current. Let
a, (e) be the creation operator, in the absence of
V=—V,p+V, +V„of an electron with energy e, spin 0.,
and unit flux (in an appropriate unit) IIowing from lead a
to the opposite lead. When V is turned on, the electron
will undergo energy relaxations due to V,p, spin flips due

to V, , and elastic scattering due to V, . At zero temper-
ature, the dominant eA'ect of V,p should be spontaneous
phonon-emission processes, without the creation of addi-
tional electron-hole pairs. This means that a, (e)
evolves into an operator a,t (e), which creates the incom-

ing electron wave in lead a plus outgoing waves in both
leads, simultaneously creating some phonons and invert-

ing spins of some impurities. Since V is localized in the
conductor, the incoming electron wave should be the
same as that of a, t(e) and should thus be of unit Ilux.
Hence, the magnitude of the incoming flux is proportional
to a, a, . On the other hand, we assume that by super-
posing the operators a, (e) an operator b, (e) can be
constructed, which creates an outgoing electron wave of
energy t. , spin o, and unit flux, plus some ingoing waves
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in both leads, while simultaneously modifying phonon and

impurity-spin states. That is,
2

b, (e) = g g s, p (e, e')a~ (e'), (4)
e', a'P [

~here s, p is a matrix that includes phonon and/or
impurity-spin operators. When V,p

= V, =0, the matrix
reduces to 8 b, , (Kronecker's delta) times the usual
one-body scattering matrix [6]. By expressing the incom-

ing and outgoing electron fluxes using a, and b, , re-

spectively, we obtain

N, =+[a, (e)a, (e) —b, (e)b, (e)]. (5)
E', 0'

Since electrons are constantly supplied from ideal reser-
voirs, the incoming electrons obey the Fermi-Dirac (FD)
distribution: (a, (e)ap (e')) =6, ~h S, ,f,(e), where

f, is the FD function. Here, the average of N, is given

by

(N. ) =2+ [f.(e) —f.(e)],

where f,(e)=(b, (e)b, (e)) is the distribution function
of outgoing electrons. By approximating the expectation
value of the product of a function of phonon (and/or
impurity-spin) operators and a function of electron opera-
tors by the product of the expectation values of each
function, we find

f.(e) = g $(st p (e, e')s. iJ (e, e'))fp(e'') . (7)
E', cr' P

A

To calculate the variance of N„we also use the Hartree-
Fock approximation, and find, at zero temperature, that

(RV, ) = 2 + [ [6, , —(b t (e')b. (e))](b, (e)b, (e ))

(6)

(9)

where p, (a =1,2) denotes the chemical potential of
reservoir a. If we neglect a weak t dependence of T for

pz & e» pl, then Eqs. (6), (9), and (10) indeed repro-
duce the results of Ref. [1]:

(N, ) =CThp, (6N, ) =CT(I —T)Ap . (11)
Here C=gr/2xh, where g =2—is the spin degeneracy, and

—l(b.'.(.)b.-.(e'»
I
'] . (8)

We note that the last term is zero because, by symmetry,
the outgoing electrons are not spin polarized. We also
note that correlations between diAerent modes are in gen-
eral small: (b, (e)b, (e'))=0 for e~e' (which becomes
exact in both the coherent and damped limits). Thus, we

finally obtain the very simple formula

(BN.') =2 g [1 —f,(e) ]f.(e) .

Before proceeding further, let us confirm that in the
coherent regime (L)&L&,L,i„) our general results, Eqs.
(6), (7), and (9), reproduce the previous results. When

V,p
= V, =0, Eq. (7) yields, for a =1,

0 (pl &e),
fl(e) =fi (e)—= 1

—7' (p2 «» pl), (10)
1 (e» p2),
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hp=p| —p2) 0. Substituting this result into Eq. (3)
yields Eq. (1).

Dephasing. —Most quantum effects characteristic of
mesoscopic conductors disappear when the transit time
ri, of an electron through the conductor exceeds rq [5,6].
It is therefore worthwhile to investigate whether 8' is

suppressed when r&& rt, «z„~„. This is equivalent, in

length scale, to L& & L «L«, since we will later show that
L,|,=L«. Our model yields the last inequality (L «L«)
when V,& 0, which leads to s, ~ a:8, , In this case, we

find that f~ takes the same functional form as Eq. (10),
but we should replace T with a generalized transmit-
tance. That is, since the electron spin is not conserved, T
can no longer be defined as the square of the usual one-

body scattering amplitude. Instead, we define T simply
as the probability that an electron passes through the
conductor, disregarding whether or not its spin is con-
served. With this T, f~ is given by Eq. (10), and (N, )
and (BN, ) are therefore given by Eq. (11). Hence,

W=l —T (for any L«L«) .

That is, although Eq. (I) was obtained for L «Lq, L «the

same form approximately holds even when L ) L& if the
generalized transmittance is used for T. (The value of
this T is of course different from that for V, =0.) As L
is increased, this T eventually goes to zero. Hence, we

see that the dephasing without energy relaxation does not
lead to W«1 as L ~ [9]. This is in sharp contrast to
other fluctuations in mesoscopic systems, such as the
universal conductance fluctuations, most of which are
suppressed by the dephasing [5,6].

Dissipation. —We now consider the energy dissipations
of electrons by taking V,&&0 and V, 0. Let us first
consider the damped limit where V,z is very large. In this
limiting case, all outgoing electrons are relaxed to states
of minimum allowable energy, so

0 (pg( e),
f.(e) =f,"(e)= (13)e(pa ~

where P, (a =1,2) denotes the Fermi energy of outgoing
electrons in lead a, whose energy can be defined in the
damped limit. Substituting this form into Eqs. (6), (9),
and (3), we get

(1V,) =C(pi —Pi), (b'1V, ) =0, W=O (L)&L«) . (14)

Note that in this case the Landauer formula [6] for the
average current is no longer valid. We see that the non-
equilibrium noise is completely suppressed in this damped
limit. That is, the energy transfer from the electron sys-
tem to the phonon system (or photon system [8]) is essen-
tial for noise suppression.

To interpolate between the two limiting (and apparent-
ly contradicting) formulas, Eq. (14) and Eq. (I) or (12),
we calculated 8' in the intermediate region by taking the
following model for the electron-phonon interaction [8]:
V~ =gq qhgkqal, ak(cq+cq ), where cq is the annihilation
operator of phonons, and gp~ is the coupling constant of

the electron-phonon interaction. The result is

W=(1 —x)(1 —T), (i5)

ZP(F. )dZ, (16)
hp "

where P(E) denotes the phonon excitation spectra of the
coupled electron-phonon system, and a. represents the
average energy transfer, per traversal of one electron,
from the electron system to the phonon system [8]. That
is, 0~ x ~ 1, and x increases with increasing V,~ or L.
Note that the mean free path l for momentum relaxation
processes of an electron is smaller than L,~„. Hence,
when L» 1, an electron would undergo diffusive motions,

going back and forth in the conductor until it escapes into
a lead. The st, is therefore proportional to L for a given

V,~, and we can write

x= 1
—exp[ —r„/r, ~„]=1 —exp[ —(L/L, ~„)2]

(l «L-L,i„) .

(i7)

We see that 8'«1 when L&)L,~„, the characteristic
length at which an electron of excess energy hp relaxes
onto the Fermi surface by emitting phonons. Hence, by
definition, L,„-L„h Since L. „can be taken arbitrarily
up to a factor of order unity, we simply take L„=L,~„.

We thus obtain

W=e " (1 —T) (l«L-L,„). (18)

Equations (1), (2), (12), (14), and (15) or (18) consti-
tute a set of formulas that gives 8' in most regions of in-
terest.

Although Eqs. (15) and (18) have been derived for the
specific form of V,~, we can supplement them with the
following general argument. Suppose that we have many
conductors of different magnitudes of V, and V,z, and we

apply the same chemical-potential difference hp. We
choose a set of conductors that exhibit the same magni-
tude of (N, ). By comparing two conductors in this set,
one with no damping and the other with strong damping,
we find from Eqs. (11) and (14) that

P 1 =P
~ TAP, (i9)

f (e) = (1 —J~)f.'(e)+ +~f."(e), (20)
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where Pl and T are for the conductors with strong damp-
ing and no damping, respectively. The two conductors
have the limiting forms of fi, Eqs. (10) and (13), respec-
tively For oth. er conductors in our set, f &

must be an in-
terpolated function of these limiting forms. We note that
the definition of x, Eq. (16), is general, and its L depen-
dence, Eq. (17), is also general. Thus, we can generally
use x as the parameter for the interpolation: f~ should
gradually change from f ~

to fP as x is increased from 0
to 1. We can then see from Eqs. (6), (9), and (19) that
in general 8'becomes a decreasing function of x, and our
conclusions based on Eqs. (15) and (18) are qualitatively
correct. In particular, when f, can be approximated by
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then Eqs. (15) and (18) can be reproduced.
Nonideal reservoirs and remarks. —We have assumed

so far that the reservoirs are ideal. In real samples under
a finite Ap, however, the reservoirs (particularly their
boundaries between the conductor) would be excited by a
finite current. If the energies of excited electrons are
smaller than hp, we find —assuming perfect coherence in

the conductor —that [8]

tron system is maximally dissipated when each electron
traverses the conductor [Eq. (15)]. That is, energy
transfer from the electron system to other systems, such
as a phonon system or photon system, is essential for
noise suppression and for the noise to be macroscopic.

We are grateful to Professor H. Sakaki for stimulating
discussions and constant encouragement.

W = tI(dP )T+ (I —T), (21)

where 0( tI(hit) ~ I measures the degree of the excita-
tion, the detailed form of which is irrelevant to the
present discussion. On the right-hand side, the first term
is the scaled emission noise [10] that appears because the
reservoirs are nonideal, whereas the second term is the
granularity noise [10] caused by the random transmission
processes through the conductor. This formula explains
why the W observed for a quantum point contact [II]
does not vanish when T = I, where Eq. (I) predicts
W=O. However, it predicts, as Eq. (I) does, that W= I

as L ~. Hence, imperfectness of reservoirs does not
lead to W« I.

We finally make two remarks. The first concerns
electron-electron (e-e) interactions in the conductor.
Equation (9) indicates that the e-e interactions do not
lead to 8'((1 either, because they cannot lead to the
zero-noise distribution fP since the energy of the total
electron system is conserved. That is, the energy transfer
from the total electron system to other systems (such as
phonons and photons) is essential for the noise suppres-
sion. However, we do not know whether Eq. (9) is valid

in the presence of e-e interactions, and future study will

therefore be needed to reach a definite conclusion on the
e-e interactions. Second, throughout this Letter we have
assumed one-dimensional conductors. Our formulas may
therefore be experimentally confirmed by measuring the
noise of currents in high-quality quantum wires. For
higher-dimensional or multimode quasi-one-dimensional
conductors, our formulas may be modified. This is also a
subject for future study.

In summary, we have analyzed the nonequilibrium
quantum noise of the current in one-dimensional conduc-
tors at zero temperature. To compare the noise levels

among conductors of different conductivities, we intro-
duced the noise figure W [Eq. (3)]. In the coherent limit,
W is given by Eq. (I), which approaches unity as the
length L of the conductor is increased. In the macroscop-
ic regime, on the other hand, W varies according to Eq.
(2), approaching zero as L ~. To resolve this ap-
parent contradiction, we considered the effects of dephas-
ing and dissipation processes in the conductor, and of im-

perfect reservoirs connected to it. We showed that nei-
ther a strong dephasing in the conductor [Eq. (12)l nor
imperfectness of the reservoirs [Eq. (21)] can lead to the
noise of a macroscopic type, W(&1. It is found that
H ((1 is obtained only when the energy of the total elec-
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