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Convection Cells in Vibrating Granular Media
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We present molecular dynamics simulations of granular material submitted to vibrations in a two-
dimensional system. We find various types of convection cells, due either to the existence of walls or to
spatial modulations in the amplitude of the vibration. The direction of the motion relative to the walls

depends on shear friction. We measure the strength of the convection velocity and find a characteristic
resonance frequency as in experiments. We propose an explanation for the mechanisms that are at the
origin of the dift'erent motions.

PACS numbers: 46. 10.+z, 05.40.+j

Many astonishing, scarcely understood phenomena are
encountered when granular materials like sand or powder
move. Examples are the so-called "Brazil nut" segrega-
tion [1-3], heap formation under vibration [4-6], and
density waves emitted from outlets [7]. All these effects
seem to eventually originate in the ability of granular ma-
terials to form a hybrid state between a fluid and a solid:
When the density exceeds a certain value, the critical di-
latancy [8], it is resistant to shear like solids, while below
this density it will "fluidify. " This fluidified state can be
rather complex, especially in the presence of density fluc-
tuations and density gradients, giving rise to the men-
tioned phenomena.

Various attempts have been made to formalize and

quantify the complicated rheology of granular media.
Continuum equations of motion [9], a thermodynamic
dynamic formalism [10],a cellular automaton [1 ll, and a
random walk approach [12] have been proposed. But so
far only in rare cases has it been possible to make quanti-
tative predictions satisfying experiments. This is because
much basic understanding of the relevant mechanisms is

still lacking —even for the concept of fluidization various
definitions are possible [13].

An experimental setup particularly suited to study this
fluidization is putting sand on a loudspeaker or on a vi-

brating table [4-6,14-17]. Under gravity the sand jumps
up and down and although kinetic energy is strongly dis-

sipated, collisions among its grains reduce its density,
thereby allowing it to flow. Under certain circumstances
flow between top and bottom can occur in the form of
convection cells. Such cell flow has been observed experi-
mentally in the case of inhomogeneities in the amplitude
of the vibration, for instance when the plate is driven at
the center and fixed at the boundary [16]. Convection
occurs also within the heaps [4-6] and might even be the
"motor" for the heap formation.

In this Letter we present the first numerical evidence
for the occurrence of convection cells due to inhomo-

geneities in the vibration amplitude. We also report
convection-cell generation due to the existence of walls,

an effect that has also been observed recently [18,19].

We study two-dimensional systems and perform molecu-
lar dynamics (MD) simulations of inelastic particles with

an additional shear friction. In fact, MD simulations

[20,21] have already been applied to granular media to
model segregation [3], outflow from a hopper [22,23],
shear flow [24], and vibrating conveyor belts [25].

Let us consider a system of N spherical particles of
equal density and with diameters d chosen randomly from
a homogeneous distribution of width w around 10=1
mm. These particles are placed into a container of width

L that is open on the top and has either periodic bound-

ary conditions or fixed walls in the horizontal direction.
When two particles i and j overlap (i.e., when their dis-

tance is smaller than the sum of their radia) three forces
act on particle i: (1) an elastic restoration force

f,[ = Ym; [(r;J )
——,

' (d;+ dJ )]r;J/Jr;J (, (la)

where Y is the Young modulus (normalized by the mass),
m; a: d; the mass of particle i, and r;~ points from particle
i to j; (2) a dissipation due to the inelasticity of the col-
lision

fJ~»s= —rtrtt(v J rlJ)rtJ/lrlJI', (lb)

where y is a phenomenological dissipation coefficient and

v;J =v; —
vJ the relative velocity; (3) a shear friction force

that mimics to some degree the effect of static friction

f shear )'styli (Vli tli )trJ/( rri I
', (1c)

where y, is the shear friction coefficient and t;~
=(—

re. , rJ) is the vector r;J rotated by 90'. As com-
pared to other modelizations of the forces acting between
grains [3,22,24] our Eqs. (1) are simpler since we neglect
Coulomb friction and the rotation of particles. In fact,
static friction should be proportional to the normal force
but the term of Eq. (lc) is always needed to halt the
tangential relative motion [31. We did these simpli-
fications on purpose in order to have fewer, in our opinion
unimportant, fit parameters. Under realistic deviations
from a spherical shape of the particles, rotations are
strongly suppressed and in recent flow simulations the
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eff'ect of normal forces on friction was found to be negli-
gible [22]. When a particle collides with a wall the same
forces act as if it had encountered another particle of di-
ameter do at the collision point. Two forces act on the
system: On one hand gravitation g= —10 m/s pulls
each particle down; on the other hand the bottom of the
container is subjected to a vibrating motion described by

(a)

zp(r) =3 (x) sin(2zfr ), (2)

where f is the frequency and the amplitude 3 can have
an explicit spatial modulation of the form

3 (x) =3p[1 —8 cos(2+x/I ) ] .

(b)

+C
0

Two initial positions of the particles are considered: They
are either placed regularly on the bottom of the container
or put on random positions inside a space 7 times as high
as the dense packing. The initial velocities are either zero
or randomly chosen. After that the particles are allowed
to fall freely under gravity and relax for a time that cor-
responds to ten or twenty cycles of the vibration. The dis-
placements, velocities, and energies are then measured by
averaging over up to 200 cycles. We use a fifth-order
predictor-cor rector M D simulation with (2-6) x 10'
iteration steps per cycle which can be vectorized on the
Cray-YMP, running at about 10 ps per particle update
for N =200.

Let us first consider the case of a spatial modulation in

the amplitude of the vibration, i.e., B~O, using periodic
boundary conditions. In Fig. 1(a) we see the displace-
ments of the particles after fifteen cycles for 8=0.5.
Clearly the particles Aow upwards in the center where the
amplitude of the vibration is larger and form two convec-
tion cells. If the dissipation coefficient y is increased by a
factor of 10 the convection is completely suppressed while
it is quite insensitive to y„ including for y, =0.'

The elas-
tic modulus also has only a very weak inAuence as long as
it remains larger than 10 (in units of dp) and so we

chose a very small value compared to that of experimen-
tal materials in order to save computer time. The initial
condition plays no noticeable eAect, showing that convec-
tion is no transient effect. The polydispersity of the parti-
cles only slightly distorts the shape of the convection cells
as compared to the case ~=0. We also considered a
model in which particles lose energy each time they col-
lide with each other in order to mimic the eAects of a real
two-dimensional experimental setup [14] and found the
same eftects when y is decreased correspondingly.

The strongest convection for the aforementioned pa-
rameters is obtained around 60 Hz and it increases
dramatically with the amplitude 80. This resonance
seems to be the driving force of the convective motion. In

Fig. 1(b) one sees a snapshot of the positions of' the parti-
cles close to this resonance. In the upper part of the
packing, especially in the center where the amplitude is

strongest, the particles are not in contact anymore.
Therefore static friction cannot be eA'ective on the top
and a heap would not be stable. For this reason we think

n
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FIG. 1, Convection cells obtained with periodic boundary
conditions using 200 particles in a box of size L/dp=20 with
Ap=0. 5dp, 8=0.5, w=0. 5, Y=5000/dp, y=50g, y =200g/f
(a) Displacement of the particles after fifteen cycles for f=100
Hz; (b) snapshot of the particles and their velocities (lines)
averaged over all time steps of the last fifteen cycles closer to
the resonance, f=50 Hz.

that it is rather unlikely that the heap formation can be
traced back to resonances due to spatial inhomogeneities
of the vibrating plate.

The strength of the convection can be measured quan-
titatively by recording the average vertical components of
the velocities of the particles in the center, v], and at the
edges, v2, of the cells of Fig. 1. These quantities have
also been measured experimentally by Ratkai [16]. In

Fig. 2 we see these velocities plotted as functions of fre-
quency and amplitude of the vibration. As already men-
tioned above and also seen in the experiment [16], the
convection is strongest around a characteristic resonance
frequency given by the position of the maximum in Fig. 2
which increases for decreasing dissipation coeScient y.
In this resonance region the statistical error bars are
quite large. The strength of the resonance strongly de-
pends on the amplitude and at 30=0.3 it virtually disap-
pear s.

A completely diff'erent type of convection can be
caused by the existence of fixed vertical walls without any
modulation of the amplitude, i.e., for 8 =0. In Fig. 3 we

see various cases. As long as y, &0 there is at each wall a
very strong downward motion [Fig. 3(a)] giving rise to a

circulating current. The particle positions at the end of
one cycle are shown in Fig. 3(b) and one sees that there
are long horizontal holes in the packing. The particles
falling downward tend to separate vertically but horizon-
tal neighbors stay together due to the shear friction y,
which synchronizes their velocities. In Fig. 3(c) we see
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FIG. 2. Average vertical components of the velocity in the
center (v~) and the sides (v2) of the cell as function of the fre-

quency f for amplitudes Ap=0. 7dp (+ for v~ and e for v2),
Ap 0.5dp (x for v~ and O for v2), and Ap=0. 3dp (0 for vf

and E for v2). All other parameters are as in Fig. 1.
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what happens when the aspect ratio is changed by halving
the height of the packing. The two convection cells
remain attached to the walls, showing that the walls are
at the origin of these cells. One also recognizes a slight
heap formation at the wall which might be a first sign of
the famous sand heaps discovered by Faraday [4-6). In
Fig. 3(d) we see that when y, =0 there is still a convec-
tion cell but the motion of the particles at the wall can
now be either upward or downward. This effect prevails
when the shear friction is only suppressed during col-
lisions with the walls and not at particle-particle col-
lisions.

The average total kinetic energy (E) of the packing is
another measure for the strength of the flow. In Fig. 4
we see how it decreases with the dissipation coefficient y
in the presence of walls and with 8=0. The effect is
rather weak and the statistical error bars are quite large
so that both a linear or an exponential decay of the form
(E) cx:exp( —c7) seem possible.

Let us analyze the origin of the convection due to fixed
vertical walls. In the case of no shear friction the vertical
walls do not transfer any vibrating motion of the con-
tainer but represent only a steric hindrance to the flow.
In this case, the following scenario applies: When, after
levitating from the plate, the packing falls back on the
bottom of the container only the horizontal component of
the velocities of the particles arriving first will survive col-
lisions with the downwards vertical motion of the rest of
the packing that follows behind. So flow parallel to the
bottom plate will spontaneously appear and is reinforced
at each cycle. This parallel flow will only survive in re-
gions where it is coherent and the size of these regions
will grow due to the reinforcement. When one of these
regions collides with a vertical wa11 the flow must go up-
wards since it cannot go anywhere else. This explains not
only the orientation of the convection but also why the
convection cells are attached to the walls as seen in Fig.
3(c). The driving force for these cells is therefore the

C
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FIG. 3. Convection cells due to fixed vertical walls for 8 =0,
w 0.5, Y=5000/dp. (a) Displacements after eight cycles and

(b) snapshot of the positions of the particles for f=20 Hz,
N =600, L 46dp, Ap=1. 25dp, y=80g, y, =100g, (c) f=20
Hz, N =300, L =44dp, Ap l. ldp, y=80g, y, =100g, averaged
over ten cycles; (d) f 100 Hz, IV=200, L =20dp, Ap=0. 5dp,
y=50g, y, 0, averaged over fifteen cycles.

horizontal flows along the bottom plate.
When shear friction with the wall is present a diflerent

mechanism sets in: While the particles are pushed up
and start to levitate, the packing is still quite compressed
and so a strong pressure is exerted on the walls giving rise
to a strong shear friction while the relative motion of the
particles with respect to the walls is upward. When after-
wards the particles fall back and have downward relative
motion with respect to the wall the packing is much
looser and the shear friction much less efficient. There-
fore the upward motion of the particles with respect to
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FIG. 4. Average kinetic energy (E) as function of the dissi-

pation coefficient y for N =150, f=20 Hz, Ap=1.25dp, 8 =0,
w=0. 5, Y 5000/dp, y, =100g, averaging over twenty cycles
and using 6000 iteration steps per cycle. The full line is a linear

fit to the data; the error bars are statistical.

the wall is slowed down stronger resulting in a net drag
down along the wall. If y, is strong enough this effect
can overcome the eA'ect described in the above paragraph
and the convection can reverse its orientation.

We have shown via a rather simple two-dimensional

description of a granular medium as an ensemble of in-

elastic spherical particles with shear friction that various

types of convection can occur when such an ensemble is

placed on a vibrating plate. First, one can have reso-
nances coming from spatial variations in the amplitude of
the vibration. Second, horizontal flows that are generated
close to the bottom can collide with a fixed vertical wall

acting just as an obstacle to the Aow and give rise to a
circular motion. Third, in the presence of shear friction
with a vertical wall a downward drag force along the wall

is exerted on the particles acting opposite to the circular
Aow. %e have investigated how the strength of the con-
vection depends on the initial conditions, the frequency
and the amplitude of the vibration, the dissipation, the
elastic moduli, the number and size distribution of the
particles, etc. , and presented quantitative predictions.
Since it is not straightforward to determine the material
constants corresponding to y and y„a comparison with

experiments still involves two fit parameters. A more
realistic model including real static and dynamic friction,
rotations of particles, and eventually varying particle
shapes is needed to establish a closer contact between
model parameters and material constants.

It is not clear whether any of the discussed convection
mechanisms are at the origin of the well-known heap in-

stabilities with surface avalanches [4-6]. Although we

have observed the appearance of weak finite slopes close
to walls a larger number of particles must be simulated
over longer times to be conclusive. Work in this direction
is in progress. In addition, three-dimensional simulations
should also be performed.
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